Question

(6 A simply supported beam ABC of length L has AB of length HL and second moment of area / and BC of length HL and second moment of area I2. Determine the strain energy stored in the beam when it is subject to a vertical load F at its midpoint and the consequential central deflection.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
(6 A simply supported beam ABC of length L has AB of length HL and second...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q =...

    Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q = 18kN/m and a concentrated load of P = 23kN at the centre. Consider length of the beam, L = 3m, Young's modulus, E = 200GPa and moment of inertial, I = 30 x 10 mm-. Assume the deflection of the beam can be expressed by elastic curve equations of the form: y(x) = Ax4 + Bx3 + Cx2 + Dx + E. 1) Sketch...

  • The simply supported beam of length L is subjected to uniformly distributed load of w and...

    The simply supported beam of length L is subjected to uniformly distributed load of w and a vertical point load P at its middle, as shown in Figure Q3. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters w, P,L,1, E. Self-weight of the beam is neglected. P W L/2 L/2 Figure Q3 (a) Determine the reactions, bending moment equation along the beam and...

  • Question 2 Simply supported beam ABC is subject to a point load and the patch loads...

    Question 2 Simply supported beam ABC is subject to a point load and the patch loads as indicated in Figure Q2. Assume the beam has a uniform cross-section size. The Modulus of Elasticity E = 210x106 kN/m2, second moment of area l=5x105 m. Determine the deflection of beam ABC at the middle point using MacCaulay's Method. Total (15) marks. -30 KN -6 kN/m -3 kN/m B 3 m 4 m * Figure Q2: Simply supported beam ABC

  • Q2 The simply supported beam of length L is subjected to a vertical point load P...

    Q2 The simply supported beam of length L is subjected to a vertical point load P at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters P,L,1, E. Self-weight of the beam is neglected. P L/2 L/2 Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram. [10]...

  • Q2 The simply supported beam of length L is subjected to a vertical point load P...

    Q2 The simply supported beam of length L is subjected to a vertical point load P at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters P,L,1,E. Self-weight of the beam is neglected P L/2 L/2 Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram. [10] (b)...

  • 4. For a simply supported beam AB with concentrated load at C, determine step-by-step (a) the...

    4. For a simply supported beam AB with concentrated load at C, determine step-by-step (a) the graph for bending moment, (b) the elastic curve y(x) for 0<x< Land (b) the deflection at point C. The length of the beam L-a+b.

  • Q2 The simply supported beam of length is subjected to a vertical point load at its...

    Q2 The simply supported beam of length is subjected to a vertical point load at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as and. Please provide your answers in terms of letters. Self-weight of the beam is neglected. Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram [10] (b) Determine both the slope and deflection at the...

  • A simply supported wood beam AB with span length L = 6 m

    A simply supported wood beam AB with span length L = 6 m carries a trapezoidal distributed load of intensity q = 4 kN/m at the left end and q/2 at the right end. Calculate the maximum bending stress Omax due to the load if the beam has a rectangular cross section with width b = 150 mm and height h = 250 mm. 

  • solve in detail Problem Statement Consider a simply supported beam with length L=1m, width w=25mm and...

    solve in detail Problem Statement Consider a simply supported beam with length L=1m, width w=25mm and height h. The beam has a mass m=10kg hanging from it as shown in Figure 1. The mass is located at the midpoint of the beam. Figure 1 Schematic of a simply supported beam with mass m attached to it at the midpoint. The deflection of the beam at the midpoint is given by the equation below: dmg/? 48E1 where g=9.81 m/s? is the...

  • Consider the beam ABC of length L [m] in Figure 1 below, with simple supports at...

    Consider the beam ABC of length L [m] in Figure 1 below, with simple supports at both ends. The beam supports a concentrated load P [N] at point B. You may assume the beam to be weightless in your analysis. Figure 1: Schematic of beam ABC. Part (a) Determine the vertical reaction forces at points A and C in terms of P. Part (b) Determine expressions (in terms of P and L) for the shear force, V(x) and the bending...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT