Question

The state of plane stress at a point under the surface of the ANKA airplane wing is represented on the element oriented as shown in the Figure. Deternine principal Stresses Calculate the maximum in-plane shear stress and associated average normal stress by using the analytical method and Mohrs circle. For each case, determine the corresponding orientation of the element with respect to the element shown and sketch the state of stress on the element. Determine the absolute maximum shear stress at the same point. a. b. c. 60 MPa 80 MPa 240 MPa

0 0
Add a comment Improve this question Transcribed image text
Answer #1

60 Mpa 240 MPa According to proble m to Mpa y= 60 MPa (i) Peinciple stroses +W ue s r,ニ / 240+60) + | ( 240-60) +80 2 270.41The 쐐alytic method → According to problem A a Maxinum Shear stressoP For calevlating op we need valves of pa and oagivent) 6

Add a comment
Know the answer?
Add Answer to:
The state of plane stress at a point under the surface of the ANKA airplane wing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 6 (15 points) The state of plane stress at a point is shown on the...

    Problem 6 (15 points) The state of plane stress at a point is shown on the element in Figure 6. a. Using Mohr's circle, determine the principal stresses and the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case. b. Represent the state of stress on an element oriented 30° counterclockwise from the position shown in Figure 6. 20 MPa 100 MPa 40 MPa Figure 6 (plot Mohr's circle on the next...

  • 3. The state of plane stress at a point is shown on the element below. Construct...

    3. The state of plane stress at a point is shown on the element below. Construct Mohr's circle. Determine the principal stresses acting at this point and their orientation D,. Also determine the maximum in-plane shear stresses and the orientation of the element upon which they act. What is the state of stress if it is rotated 20° counterclockwise? (20 points) 90 MPa 60 MPa -20 MPa

  • with drawings Question 4 (CLO5) (6 points) The state of the stress at a point is...

    with drawings Question 4 (CLO5) (6 points) The state of the stress at a point is shown on the element. Determine the following: (a) The principal stresses, and the corresponding orientation of the element (b) The maximum in-plane shear stress and the associated average normal stress at the point. Show the corresponding orientation of the element. (c) Using Mohr's circle (only), determine the stress components at the same point on another element oriented 30° counterclockwise from the position shown. Draw...

  • 23 Mohr’s circle The state of plane stress at a point is represented by the element...

    23 Mohr’s circle The state of plane stress at a point is represented by the element shown in Fig. 2.2. Determine maximum shear stresses and the orientation, draw the stress element with the proper orientation. Determine principal stresses and the orientation, draw the stress element with the proper orientation (Note: this question is required to be solved using Mohr’s circle.) Mohr’s circle The state of plane stress at a point is represented by the element shown in Fig. 2.2. Determine...

  • 3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa;...

    3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa; and unknown shear stress, The maximum principal stress was determined to be 104.34 MPa. Using Mohr's cirdle, determine a. the magnitude of the shear stress, b. the principal plane and the minimum principal stress. Then, sketch the element showing all stresses in its proper orientation, c. the maximum shear stress, associated normal stress and the orientation of the element. Then, sketch the element showing...

  • . Consider the element shown. Determine the state of stress with respect to an element oriented 2...

    . Consider the element shown. Determine the state of stress with respect to an element oriented 22.5° CCW with respect to the element shown. (b) Find the principal stresses. (c) Find the principal planes. (d) Find the maximum shear stresses. (e) Find the maximum shear-stress planes. (f Sketch all the above stresses on appropriately oriented 560 kPa 2100 kPa planes using a ray diagram. 300 kPa (g) Draw Mohr's circle for the element and indicate items (a) - (e) on...

  • a) The state of stress at a point is shown on the element in Figure Q4(a)...

    a) The state of stress at a point is shown on the element in Figure Q4(a) Deternine i) The principal stresses (in-plane) and the corresponding principal planes; 1) The maximum in-plane shear stress and the orientation of the corresponding plane as well as the normal stress on that plane. 60 MPa 30 MPa 45 MPa Figure Q4(a)

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, o, and O2 and their corresponding principal angles, 0p1,0p2 and show all of these on your Mohr's circle construction and a properly oriented stress element c. Calculate the maximum shear stresses, ITmax and their corresponding angles of maximum...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and Txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, 01 and 02 and their corresponding principal angles, 021,092 and show all of these on your Mohr's circle construction and a properly oriented stress element. c. Calculate the maximum shear stresses, ETmax and their corresponding angles of maximum...

  • For the stress state shown, use Mohr's Circle to determine the following:

    For the stress state shown, use Mohr's Circle to determine the following: (a) Principal stresses σ1 and σ2, the associated shear stress τx'y', and the element orientation θp. Clearly indicate magnitude and direction. (b) Maximum in-plane shear stress τmax,in plane , the associated normal stresses σx' and σy', and the element orientation θs. Clearly indicate magnitude and direction. (c) Absolute maximum shear stress τmax,absolute · Show all work using Mohr's Circle. If your drawings do not indicate that you used Mohr's Circle appropriately, you...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT