Question

AP1. Consider the pendulum system shown below, where L = 0.7 meters, m = 1.5 kg, g = 9.81 m/s and e(t) is measured in radians

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given: 0 [= 0.7 m (2) m = 1.5 kg (3) g = 9.81 More (al Equation of motion pivot point Töch Applying Newtons and law, Net tor

Add a comment
Know the answer?
Add Answer to:
AP1. Consider the pendulum system shown below, where L = 0.7 meters, m = 1.5 kg,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as...

    (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0) ~ 0, and with that substitution, the differential equation becomes linear A. Determine the equation of motion of a...

  • (1 point) Suppose a pendulum of length L meters makes an angle of θ radians with the vertical, as n the figure t can be...

    (1 point) Suppose a pendulum of length L meters makes an angle of θ radians with the vertical, as n the figure t can be shown that as a function of time, θ satisfies the differential equation d20 + sin θ-0, 9.8 m/s2 is the acceleration due to gravity For θ near zero we can use the linear approximation sine where g to get a linear di erential equa on d20 9 0 dt2 L Use the linear differential equation...

  • 2. For the simple pendulum shown in Figure 2, the nonlinear equations of motion are given by θ(t)...

    do (b) and (c) only. 2. For the simple pendulum shown in Figure 2, the nonlinear equations of motion are given by θ(t) + 믈 sin θ(t) + m 0(t)-0 Pivot point L, length Massless rod , mass Figure 2. A simple pendulum 3. Consider again the pendulum of Figure 2 of problem 2 when g = 9.8 m/s, 1 = 4.9m, k =0.3, and (a) Determine whether the system is stable by finding the characteristic equation obtained from setting...

  • (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It...

    (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It can be shown that e as a function of time satisfies the differential equation: de 8 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin(0) - 0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum...

  • Fresh answer please. Thanks in advance. Consider the following pendulum that consists of a massless straight...

    Fresh answer please. Thanks in advance. Consider the following pendulum that consists of a massless straight rigid rod AOB with a point mass m attached at the top point B and a point massM attached at the bottom point A. The pendulum rotates without friction about point O and it is initially at vertical equilibrium. Two springs are attached at the top point B from one end and fixed at the other end. The springs are unstretched at t-0 and...

  • Consider the inverted pendulum system presented in Fig. 1. The pivot of the pendulum is mounted o...

    Consider the inverted pendulum system presented in Fig. 1. The pivot of the pendulum is mounted on a cart, which can move in a horizontal direction. The pendulum can be kept balanced at a specific position by applying a horizontal force to drive the carriage. Assume that the pendulum mass, m, is concentrated ia at the end of the massless rod. The horizontal displacement of the pivot on the cart is x, the rotational angle of the pendulum is θ...

  • show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0...

    show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 +sin0 0 dt2 where g 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0)~0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum with length...

  • The motion of a pendulum bob with mass m is governed by the equation mL0" (t) + mg sin θ (t)-0 where L is the lengt...

    The motion of a pendulum bob with mass m is governed by the equation mL0" (t) + mg sin θ (t)-0 where L is the length of the pendulum arm, g 3 and θ is the angle (in radians) between the pendulum arm and the vertical. Suppose L 16 ft and the bob is set in motion with (0 1 and 0' (0)--3. Find the second degree Taylor polynomial P2(t) that approximates the angular position θ(t) of the bob near...

  • Question 2 The pendulum shown in Figure 2 consists of a concentrated mass m attached to a rod who...

    Question 2 The pendulum shown in Figure 2 consists of a concentrated mass m attached to a rod whose mass is small compared to m. The rod's length is L. The equation of motion for this pendulum is Suppose that L 1 m and g 9.81 m/s2. Use MATLAB to solve this equation using symbolic and numerical techniques for, θ(t) for two cases: , θ(0)-0.5 rad and, θ(0)-0.8 rad. In both cases 0(0) 0. Figure 2- A pendulum [3 marks]...

  • A pendulum consists of a uniform rod of total mass m and length L that can...

    A pendulum consists of a uniform rod of total mass m and length L that can pivot freely around one of its ends. The moment of inertia of such a rod around the pivot point is 1/3mL^2 The torque around the pivot point of the pendulum due to gravity is 1/2mgLsinθ, where θ is the angle the rod makes with the vertical and g is the acceleration due to gravity. a) Write down the equation of motion for the angle...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT