Question

For a causal LTI discrete-time system described by the difference equation:

For a causal LTI discrete-time system described by the difference equation: 

y[n] + y[n – 1] = x[n] 


a) Find the transfer function H(z).

b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? 

c) Find its impulse response h[n]. 

d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. 

e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

2 2
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
For a causal LTI discrete-time system described by the difference equation:
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n...

    Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output y[n] described by bx[n-21- ax[n-3 for n 2 0, where a and b are real-valued positive coefficients. A) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? B) What are the initial conditions and their values? Why? C) Draw the block diagram of the filter relating input x[n] and output y[n] D) Derive a formula for the transfer function in...

  • A causal LTI system is described by the following difference equation:

    A causal LTI system is described by the following difference equation: y(n) – Ay(n-1) - 2A2y(n − 2) = x(n) – 2x(n-1) + x(n–2), where A is a real constant. Determine the z-domain transfer function, H(z), of the system in terms of A. 

  • A causal discrete-time system is described by the following difference equation: Use Matlab to write a...

    A causal discrete-time system is described by the following difference equation: Use Matlab to write a script to complete the following tasks. Turn in the output created by the Matlab "publish" utility. (a) Compute and plot the impulse response h[n], 0くn 〈 50. Use the function h=imp2(b, a , N ) to find the impulse response, and use the stem ) function to create the plot. (b) Let x[n] be defined by (n - 15)2 0n K 30 x[n] elsewhere...

  • 2. A discrete time LTI system is described by the difference equation (assume initial conditions are...

    2. A discrete time LTI system is described by the difference equation (assume initial conditions are zero) y[n] + y[n – 1] = x[n] + 1/4x[n – 1] – 1/8x[n – 2] a) Find the transfer function of the system H(z). b) If you take the inverse of the transfer function (1/H(z)), is the system stable? Prove yes or no.

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • 6. (15) Consider the following causal linear time-invariant (LTT) discrete-time filter with input in and output...

    6. (15) Consider the following causal linear time-invariant (LTT) discrete-time filter with input in and output yn described by y[n] = x[n] – rn - 2 for n 20 . Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? • What are the initial conditions and their values for this causal and linear time-invariant system? Why? • Draw the block diagram of the filter relating input x[n) and output y[n] • Derive a formula for...

  • Discrete-time convolution. Use of shift invariance for LTI systems. A discrete-time LTI system is described the...

    Discrete-time convolution. Use of shift invariance for LTI systems. A discrete-time LTI system is described the its impulse response h[n]. h[n] = (5)"u[n]. n-3 1 An input x[n] = u[n – 4) is applied. The output of the system y[n] is given by: x[r] – 54 G)" ()") un 14 The correct answer is not provided gắn] = [16(5)” – 54(5) ] n] y[n] = [16()" – 54(+)"] uſn – 4

  • 1) A causal discrete-time system is described by the difference equation, y(n) = x(n)+3x(n-1)+ 2x(n-4) a)...

    1) A causal discrete-time system is described by the difference equation, y(n) = x(n)+3x(n-1)+ 2x(n-4) a) What is the transfer function of the system? b) Sketch the impulse response of the system

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT