Question

Consider the M/G/1 queue with FIFO service (see Homework 6) Assume that (1) the arrival rate is 1 customer per minute, and (2) the service times are exponentially distributed with average service time 45 seconds. 07. Find the server utilization 88. Find the average value of the waiting time (in minutes). 9. Find the probability that an arriving customer will wait in the queue for at least 1 minute. 10. Find the probability that an arriving customer who finds the server busy will wait in the queue for at least 1 minute.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Consider the M/G/1 queue with FIFO service (see Homework 6) Assume that (1) the arrival rate...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A queuing system with a Poisson arrival rate and exponential service time has a single queue,...

    A queuing system with a Poisson arrival rate and exponential service time has a single queue, two servers, an average arrival rate of 60 customers per hour, and an average service time of 1.5 minutes per customer. Answer the following questions. Show ALL formulas and calculations used in your response. The manager is thinking of implementing additional queues to avoid an overloaded system. What is the minimum number of additional queues required? Explain. How many additional servers are required to...

  • Consider an n server system where the service times of server i are exponentially distributed with...

    Consider an n server system where the service times of server i are exponentially distributed with rate μi, i = 1,..., n. Suppose customers arrive in accordance with a Poisson process with rate λ, and that an arrival who finds all servers busy does not enter but goes elsewhere. Suppose that an arriving customer who finds at least one idle server is served by a randomly chosen one of that group; that is, an arrival finding k idle servers is...

  • For the following problems compute (a) utilization, (b) average time a customer waits in the queue,...

    For the following problems compute (a) utilization, (b) average time a customer waits in the queue, (c) average number of customers waiting in the queue, (d) average number of customers in service, (e) the average time a customer spends in the system. Problem 1. An average of 10 cars per hour (with variance 4) arrives at a single-server drive-in teller. Assume that the average service time for each customer is 5.5 minutes (with variance 5). Problem 2. Customers arrive to...

  • Problem 1 Given the data below for a single-server single-queue system, find the following performance measures....

    Problem 1 Given the data below for a single-server single-queue system, find the following performance measures. Customer Arrival Time Service Time (min) Time Customer Waits in Queue (min) Time Customer spends in System (min) Idle Time of Server (min) 04 0) Average Waiting Time (11) Probability of a customer to be waiting (i.e., number of waiting customers over total number of customers) (II) Probability of idle server (i.e., proportion of idle time over total running time) (iv) Average Service Time...

  • **LOOKING FOR FORMULAS, ANSWERS PROVIDED. Problem-1: At a single-phase, multiple-channel service facility, customers arrive randomly. Statistical...

    **LOOKING FOR FORMULAS, ANSWERS PROVIDED. Problem-1: At a single-phase, multiple-channel service facility, customers arrive randomly. Statistical analysis of past data shows that the interarrival time has a mean of 20 minutes and a standard deviation of 4 minutes. The service time per customer has a mean of 15 minutes and a standard deviation of 5 minutes. The waiting cost is $200 per customer per hour. The server cost is $25 per server per hour. Assume general probability distribution and no...

  • Consider a single-server queueing system with arrival and service details as: Interarrival times: 3, 2, 6,...

    Consider a single-server queueing system with arrival and service details as: Interarrival times: 3, 2, 6, 2, 4, 5 Service times: 2, 5, 5, 8, 4, 5 Prepare a table show below for the given data. Stop simulation when the clock reaches 20. Write a Java program, to implement this single-server queueing system, print out the table shown below: You should create a future event list in your Java code, and print out the contents of FE list in each...

  • Consider a simple queuing system in which customers arrive randomly such that the time between successive...

    Consider a simple queuing system in which customers arrive randomly such that the time between successive arrivals is exponentially distributed with a rate parameter l = 2.8 per minute. The service time, that is the time it takes to serve each customer is also Exponentially distributed with a rate parameter m = 3 per minute. Create a Matlab simulation to model the above queuing system by randomly sampling time between arrivals and service times from the Exponential Distribution. If a...

  • Please fill in all question marks!!!! Problem 15-25 (Algorithmic) Burger Dome sells hamburgers, cheeseburgers, French fries,...

    Please fill in all question marks!!!! Problem 15-25 (Algorithmic) Burger Dome sells hamburgers, cheeseburgers, French fries, soft drinks, and milk shakes, as well as a limited number of specialty items and dessert selections. Although Burger Dome would like to serve each customer immediately, at times more customers arrive than can be handled by the Burger Dome food service staff. Thus, customers wait in line to place and receive their orders. Suppose that Burger Dome analyzed data on customer arrivals and...

  • Consider the following parameters for a queueing system with an infinite queue and infinite calling population....

    Consider the following parameters for a queueing system with an infinite queue and infinite calling population. Arrivals follow the Poisson distribution with an average rate of 12 per hour. Service times are exponentially distributed with an average time of 4 minutes. Find the set of queue statistics (N, Nq, T, Tq, r), and find the percentage of time that the server is busy.

  • During tax season the IRS hires seasonal workers to help answer the questions of taxpayers who...

    During tax season the IRS hires seasonal workers to help answer the questions of taxpayers who call a special toll-free number for information. Suppose that calls to this line occur at an average rate of 60 calls per hour and follow a Poisson distribution. An IRS worker can handle an average of 5 calls per hour with service times, exponentially distributes. Assume that there are 10 IRS workers and when they are all busy, the phone system can keep 5...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT