Question

a 5.0 kg mass has a spring, k = 80 N/m, attached to it and it...

a 5.0 kg mass has a spring, k = 80 N/m, attached to it and it is moving at 6.0 m/s to the right. the end with the spring collides with a 10 kg mass that is stationary. determine the maximum compression of the spring
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1. m, = 5 kg ma= lokg. 1 . K = 80 N/m u,= 6.0 mys U₂=0 using conseruation of linear momentum . momentum before collision = af

Add a comment
Know the answer?
Add Answer to:
a 5.0 kg mass has a spring, k = 80 N/m, attached to it and it...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A small box with mass 0.6 kg  is attached to a spring (k=250 N/m )...

    A small box with mass 0.6 kg  is attached to a spring (k=250 N/m ) and oscillates left and right. At a particular moment, the box is 20 cm to the right of its equilibrium position moving left with a speed of 4 m/s . a) What is the maximum distance to the right of its equilibrium position the box will reach? (cm) b) What is the maximum speed the box will have? (m/s) c) What is the period...

  • A small box with mass 0.7 kg  is attached to a spring (k=300 N/m )...

    A small box with mass 0.7 kg  is attached to a spring (k=300 N/m ) and oscillates left and right. At a particular moment, the box is 20 cm to the right of its equilibrium position moving left with a speed of 2 m/s . What is the maximum distance to the right of its equilibrium position the box will reach? What is the maximum speed the box will have? What is the period of the box's oscillations?

  • A small box with mass 0.5 kg  is attached to a spring (k=350 N/m )...

    A small box with mass 0.5 kg  is attached to a spring (k=350 N/m ) and oscillates left and right. At a particular moment, the box is 25 cm to the right of its equilibrium position moving left with a speed of 3 m/s. A) What is the maximum distance to the right of its equilibrium position the box will reach? B) What is the maximum speed the box will have? C) What is the period of the box's...

  • A small box with mass 0.6 kg  is attached to a spring (k=350 N/m )...

    A small box with mass 0.6 kg  is attached to a spring (k=350 N/m ) and oscillates left and right. At a particular moment, the box is 25 cm to the right of its equilibrium position moving left with a speed of 4 m/s . A) What is the maximum distance to the right of its equilibrium position the box will reach? B) What is the maximum speed the box will have? C) What is the period of the...

  • A small box with mass 0.4 kg  is attached to a spring (k=250 N/m )...

    A small box with mass 0.4 kg  is attached to a spring (k=250 N/m ) and oscillates left and right. At a particular moment, the box is 25 cm to the right of its equilibrium position moving left with a speed of 3 m/s. Part A: What is the maximum distance to the right of its equilibrium position the box will reach? Part B: What is the maximum speed the box will have? Part C: What is the period...

  • A spring with k = 245 N/m has a mass of m = 4.35 kg attached...

    A spring with k = 245 N/m has a mass of m = 4.35 kg attached to it. An external force F whose maximum value is 825 N drives the spring mass system so that it oscillates without any resistive forces. If the amplitude of the oscillatory motion of the spring-mass system is 3.65 cm, find the frequency of the external force that drives this motion. Hz

  • A 0.40-kg mass is attached to a spring with a force constant of k = 207...

    A 0.40-kg mass is attached to a spring with a force constant of k = 207 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 2.0 cm. Determine the following. (a) mechanical energy of the system _____ J (b) maximum speed of the oscillating mass _____ m/s (c) magnitude of the maximum acceleration of the oscillating mass _____ m/s2 A 0.40-kg mass is attached to a spring with a force constant of k =...

  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • A 2 kg block is launched to the right by a spring with k=1000 N/m. The...

    A 2 kg block is launched to the right by a spring with k=1000 N/m. The spring is initially compressed by 0.3 m and is not attached to the block. It slides across the table a distance of 0.2 m where is hits and sticks to a 4 kg block. The 4 kg block is right at the end of a second, initially uncompressed, 1000 N/m spring. Find the maximum compression of the second spring if the coefficient of friction...

  • A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all.

    A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all. A second block, of mass m = 1.25 kg, rests on top of M. The coefficient of static friction between the two blocks is 0.30. What is the maximum possible amplitude of oscillation such that m will not slip off M?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT