Question

A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all.


A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all. A second block, of mass m = 1.25 kg, rests on top of M. The coefficient of static friction between the two blocks is 0.30. What is the maximum possible amplitude of oscillation such that m will not slip off M?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The oth...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall. A second block with mass m rests on top of the first block. The coefficient of static friction between the a blocks is μs. a) Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. b) Suppose the coefficient of...

  • A block with mass M rests on a frictionless surface and is connected to a horizontal...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (Fig. P14.68). A second block with mass m rests on top of the first block. The coefficient of static friction between the blocks is ms. Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. Suppose the two blocks are...

  • A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface.

    A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface. A second block of mass m is placed on top of the first block. The coefficient of static friction between the two blocks is his. What is the angular frequency of oscillation, and what is the maximum possible amplitude of oscillation such that the second block will not fly off?

  • A horizontal spring of spring constant 100 N/m is attached to a wall, and a block (A) of mass 5 kg. The block rests on a frictionless table.

    3.   A horizontal spring of spring constant 100 N/m is attached to a wall, and a block (A) of mass 5 kg.   The block rests on a frictionless table.   It oscillates with an amplitude of 10 cm. On top of the block rests a second block (B), held in place only by friction.    (A) If block B slips, where is it most likely to do so:  near the center of the spring's travel, or near the extremes?   Why?    (B)  How...

  • A large block P attached to a light spring executes horizontal, simple harmonic motion as it...

    A large block P attached to a light spring executes horizontal, simple harmonic motion as it slides across a frictionless surface with a frequency f = 1.60 Hz. Block B rests on it as shown in the figure, and the coefficient of static friction between the two is Mu_s = 0.510. What maximum amplitude of oscillation can the system have if block B is not to slip cm

  • A 2.00-kg block lies at rest on a frictionless table. A spring, with a spring constant...

    A 2.00-kg block lies at rest on a frictionless table. A spring, with a spring constant of 100 N/m, is attached to the wall and to the block. The second block of 0.50 kg is placed on top of the first one. The 2.00-kg block is gently pulled to a position x = + A and released from rest. There is a coefficient of friction of 0.45 between the two blocks. (a) Assuming that the top block does not slide,...

  • A 2.00-kg block lies at rest on a frictionless table. A spring, with a spring constant...

    A 2.00-kg block lies at rest on a frictionless table. A spring, with a spring constant of 100 N/m, is attached to the wall and to the block. A second block of 0.50 kg is placed on top of the first one. The 2.00-kg block is gently pulled to a position x = + A and released from rest. There is a coefficient of friction of 0.45 between the two blocks. (a) Assuming that the top block does not slide,...

  • A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring,...

    A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring, with a spring constant of 100 N/m is attached to the wall and to the block. A second block with m(2)=0.50 kg is placed on top of the first block. The first block is gently pulled to a position x = + A and released from rest. There is a coefficient of static friction of 0.45 between the two blocks. (a) What is the...

  • A small block of mass 4.2 kg sits on top of a block of mass 19.8...

    A small block of mass 4.2 kg sits on top of a block of mass 19.8 kg. The lower block is attached to a spring with spring constant 248 N/m and can slide on a horizontal frictionless surface. The coefficient of friction between the blocks is 0.4. What is the maximum possible amplitude of simple harmonic motion, xm, of the spring-blocks system if no slippage is to occur between the blocks?

  • A 3.00-kg block is placed on top of a 12.0-kg block that rests on a frictionless...

    A 3.00-kg block is placed on top of a 12.0-kg block that rests on a frictionless table. The coefficient of static friction between the two blocks is0.500. What is the maximum horizontal force that can be applied before the 3.00-kg block begins to slip relative to the 12.0-kg block, if the force is applied to each of the following? (a) Find the acceleration with which Robin is pulled upward. (b) Find the tension in the rope while Robin escapes.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT