Question

by the differential equation What is the frequency response of the stable, causal LTI system defined by the differential equa

0 0
Add a comment Improve this question Transcribed image text
Answer #1

first convert difference equation to transfer function form,

apply laplase transform to difference equation

s2Y(s) + 6 * s * y(s) + 2 * y(s) = s * X(s) + 4 * X(s)

(s2 + 6s+2) * y(s) = (s+4)*X(s)Y s)

Lets write below code in matlab command prompt

lets use lodspace to create values from 10^-1 to 10^5 and use freqs to plot frequency response of above system with frequency w

>> n=[1 4];
>> d=[1 6 2];
>> w = logspace(-1,5);
>> freqs(n,d,w)

10 E 10 -5 10 10 10 10 10 10 10 10 Frequency (rad/s) 0 -50 100 10 10 10 10 10 10 10 Frequency (rad/s)

Add a comment
Know the answer?
Add Answer to:
by the differential equation What is the frequency response of the stable, causal LTI system defined...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3. The input and the output of a stable and causal LTI system are related...

    Problem 3. The input and the output of a stable and causal LTI system are related by the differential equation dy ) + 64x2 + 8y(t) = 2x(t) dt2 dt i) Find the frequency response of the system H(jw) [2 marks] ii) Using your result in (i) find the impulse response of the system h(t). [3 marks] iii) Find the transfer function of the system H(s), i.e. the Laplace transform of the impulse response [2 marks] iv) Sketch the pole-zero...

  • 5. 10pt] The input and output of a stable and causal LTI system are related by...

    5. 10pt] The input and output of a stable and causal LTI system are related by the differential dt2 dt Find the impulse response of this system

  • dy(D), 5) Consider a causal LTI system S described by the following differential equation: 2 +...

    dy(D), 5) Consider a causal LTI system S described by the following differential equation: 2 + 3y(t) = x(t). Draw a block digram representation for S. Then, convert this differential equation into an integral equation, and draw a corresponding block diagram representation. dt

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • Consider a causal LTI system described by e yin]-ανίn- μ) = xjn] A. What is the...

    Consider a causal LTI system described by e yin]-ανίn- μ) = xjn] A. What is the condition of o over which the system is BIBO stable? B. For & = /½ and u 2, find this system transfer function. C. For the same conditions in part B, find the frequency response H() D. Determine the magnitude and phase of H(o). E. Use MATLAB to sketch the magnitude spectrum over 0< w s 2n Consider a causal LTI system described by...

  • Consider a causal LTI system with frequency response H(jw) = 1 2 + jw For a...

    Consider a causal LTI system with frequency response H(jw) = 1 2 + jw For a particular input x(t) this system is observed to produce the output y(t) = e-ºut) - e-stutt) i) Determine x(t). ii) Is this system stable? Explain your reasoning. iii) Plot the magnitude and phase responses of H (jw).

  • frequency response

    The impulse response of a causal and stable LTI system is given byℎ(?) = 2? −2??(?) − ?−3? ?(?)(i) Determine the frequency response of the system. (5)(ii) Determine a differential equation relating the input ?(?) and output ?(?) of the above system

  • (e) Consider an LTI system with impulse response h(t) = π8ǐnc(2(t-1). i. (5 pts) Find the frequency response H(jw). Hint: Use the FT properties and pairs tables. ii. (5 pts) Find the output y(t) when...

    (e) Consider an LTI system with impulse response h(t) = π8ǐnc(2(t-1). i. (5 pts) Find the frequency response H(jw). Hint: Use the FT properties and pairs tables. ii. (5 pts) Find the output y(t) when the input is (tsin(t) by using the Fourier Transform method. 3. Fourier Transforms: LTI Systems Described by LCCDE (35 pts) (a) Consider a causal (meaning zero initial conditions) LTI system represented by its input-output relationship in the form of a differential equation:-p +3讐+ 2y(t)--r(t). i....

  • A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine...

    A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine the frequency response H(e^jω) for the system. Determine a difference equation relating any input x(n) and the corresponding output y(n). Question 3:[4 Marks] A causal and stable LTI system has the property that: 4 4 a) Determine the frequency response H(e/ø) for the system. b) Determine a difference equation relating any input x(n) and the corresponding output y(n)

  • 5. The figure below shows a system consisting of a continous- time LTI system followed by a sampler (, conver...

    5. The figure below shows a system consisting of a continous- time LTI system followed by a sampler (, conversion to a sequence (, and an LTI discrete-time system. The continous-time LTI system is causal and satisfies the linear, constant-coefficient differential equation The input is a unit impulse a. Determine . (10 points) b. Determine the frequency response and the impulse response such that. (10 points). Conversiony(n) of %(t) w(n) inpuse train H(ew) to a sequence P(t) low shows a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT