Question

Question 3:[4 Marks] A causal and stable LTI system has the property that: 4 4 a) Determine the frequency response H(e/ø) for the system. b) Determine a difference equation relating any input x(n) and the corresponding output y(n)
A causal and stable LTI system has the property that:
〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n)
Determine the frequency response H(e^jω) for the system.
Determine a difference equation relating any input x(n) and the corresponding output y(n).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Coluts on Nou di purttation Pro peala d.n. d几 -5几KLeJJリー-ege-3可.el4h)esh. 25

Add a comment
Know the answer?
Add Answer to:
A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7. A causal LTI system has a transfer function given by H (z) = -1 (1...

    7. A causal LTI system has a transfer function given by H (z) = -1 (1 4 The input to the system is x[n] = (0.5)"u[n] + u[-n-1] ) Find the impulse response of the system b) Determine the difference equation that describes the system. c) Find the output y[n]. d) Is the system stable?

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • discrete time signals and systems causal LTI system has the block diagram: (a) find a difference...

    discrete time signals and systems causal LTI system has the block diagram: (a) find a difference equation relating y[n] and x[n] (b) determine if the system is stable // هبه ۸[u] [u]x

  • Consider a LTI system with impulse response h[n] = u[n]*a^n, where |a| < 1. a) Determine...

    Consider a LTI system with impulse response h[n] = u[n]*a^n, where |a| < 1. a) Determine the frequency response of the system. b) Find the magnitude response and the phase response, given a = 1/2. No plots. c) Consider a LTI system whose impulse response h1[n] is a time-shifted version of h[n], i.e., h1[n] = h[n − n0]. Compute the frequency response H1(e^(jΩ)), and represent H1(e^(jΩ)) in terms of H(e^(jΩ)).

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • 3.21. An LTI system has the impulse response h()-u(t+7)-u(t-8) (a) Determine whether this system is causal...

    3.21. An LTI system has the impulse response h()-u(t+7)-u(t-8) (a) Determine whether this system is causal (b) Determine whether this system is stable. (c) Find the system response to the input x(f) 8(t-2)-28(t+ 2)

  • Determine the output response y[n] of a causal LTI digital system with an impulse response

    Determine the output response y[n] of a causal LTI digital system with an impulse response h[n]=2(0.2)n μ[n] for an input sequence x[n] = 4(0.3)n μ[n]

  • 1. A causal LTI system is implemented by the difference equation y(n) = 2r(n) - 0.5...

    1. A causal LTI system is implemented by the difference equation y(n) = 2r(n) - 0.5 y(n-1). (a) Find the frequency response H/(w) of the system. (b) Plot the pole-zero diagram of the system. Based on the pole zero diagram, roughly sketch the frequency response magnitude |H'(w). (c) Indicate on your sketch of H w , its exact values at w=0, 0.5, and . (d) Find the output signal y(n) produced by the input signal (n) = 3 + cos(0.5...

  • Consider a causal LTI system with frequency response H(jw) = 1 2 + jw For a...

    Consider a causal LTI system with frequency response H(jw) = 1 2 + jw For a particular input x(t) this system is observed to produce the output y(t) = e-ºut) - e-stutt) i) Determine x(t). ii) Is this system stable? Explain your reasoning. iii) Plot the magnitude and phase responses of H (jw).

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT