Question

7. A causal LTI system has a transfer function given by H (z) = -1 (1 4 The input to the system is x[n] = (0.5)u[n] + u[-n-1] ) Find the impulse response of the system b) Determine the difference equation that describes the system. c) Find the output y[n]. d) Is the system stable?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) for impulse response XL%)こ 제로- (b nvexse Trans fonv

TQKİ ng Transform 1 0 10 CZ-os

10 Roc dog not Include Un Circle So it unstable Sy ste

Add a comment
Know the answer?
Add Answer to:
7. A causal LTI system has a transfer function given by H (z) = -1 (1...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the...

    A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the pole-zero plot for this system. How many possible (ROCs) are there for H(z). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to (b) Which ROC (or ROCs) correspond to a stable system? Why? (c) Which ROC (or ROCs) correspond to a causal system? Why? (d) Write a difference equation that relates the input to the output...

  • 1. An LTI system has the transfer function (or frequency response) H(u)- a) What is the...

    1. An LTI system has the transfer function (or frequency response) H(u)- a) What is the magnitude of H()? b) What is the phase of H(u)? c) Determine the impulse response of this system. d) Find the differential equation between the input and output of this system. e) What is the output of the system to the input x()c

  • A discrete-time LTI system has the system function H(z) given below:

    A discrete-time LTI system has the system function \(H(z)\) given below:$$ H(z)=\frac{z^{2}}{z^{2}-\frac{1}{4}} $$(a) Sketch the pole-zero plot for this system. How many possible regions of convergence (ROCs) are there for \(H(z)\). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to.(b) Which ROC (or ROCs) correspond to a stable system? Why?(c) Which ROC (or ROCs) correspond to a causal system? Why?(d) Write a difference equation that relates the input to the output of...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • 8. An LTI system is characterized by the following system function: H (z) = (a) Find...

    8. An LTI system is characterized by the following system function: H (z) = (a) Find the difference equation that describes this system (b) Is the system causal? Why or why not? (c) Is the system stable? Why or why not? (d) Suppose the input to the system is given by rn] (1/3)un. Find the output of the system

  • A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine...

    A causal and stable LTI system has the property that: 〖(4/5)〗^n u(n) →n 〖(4/5)〗^n u(n) Determine the frequency response H(e^jω) for the system. Determine a difference equation relating any input x(n) and the corresponding output y(n). Question 3:[4 Marks] A causal and stable LTI system has the property that: 4 4 a) Determine the frequency response H(e/ø) for the system. b) Determine a difference equation relating any input x(n) and the corresponding output y(n)

  • b) The transfer function of a causal linear time-invariant (LTI) discrete-time system is given by: 1+0.6z1-0.5z1 i Does...

    b) The transfer function of a causal linear time-invariant (LTI) discrete-time system is given by: 1+0.6z1-0.5z1 i Does the system have a finite impulse response (FIR) or infinite 3 impulse response (IIR)? Explain why. ii Determine the impulse response h[n] of the above system iii) Suppose that the system above was designed using the bilinear transformation method with sampling period T-0.5 s. Determine its original analogue transfer function. b) The transfer function of a causal linear time-invariant (LTI) discrete-time system...

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • 3.21. An LTI system has the impulse response h()-u(t+7)-u(t-8) (a) Determine whether this system is causal...

    3.21. An LTI system has the impulse response h()-u(t+7)-u(t-8) (a) Determine whether this system is causal (b) Determine whether this system is stable. (c) Find the system response to the input x(f) 8(t-2)-28(t+ 2)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT