Question

A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the pole-zero plot for this system. How

0 0
Add a comment Improve this question Transcribed image text
Answer #1

given HQ) 乙2-L. a pole-zeo pa Sidad Sepuunle For a stable Sytem Roc must ncude unit ccle to Jtabla Jystum L+É zin.no): razg yint, )-wcn, : trhu) 극 2 乙2 乙2. 2. 1-472 1-4eL SIn2w

Add a comment
Know the answer?
Add Answer to:
A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A discrete-time LTI system has the system function H(z) given below:

    A discrete-time LTI system has the system function \(H(z)\) given below:$$ H(z)=\frac{z^{2}}{z^{2}-\frac{1}{4}} $$(a) Sketch the pole-zero plot for this system. How many possible regions of convergence (ROCs) are there for \(H(z)\). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to.(b) Which ROC (or ROCs) correspond to a stable system? Why?(c) Which ROC (or ROCs) correspond to a causal system? Why?(d) Write a difference equation that relates the input to the output of...

  • 1. A discrete-time LTI system has the system function H() given below: (a) Sketch the pole-zero...

    1. A discrete-time LTI system has the system function H() given below: (a) Sketch the pole-zero plot for this system How many possible regions of convergence (ROCs) are there for H(). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to. (b) Which ROC (or ROCs) correspond to a stable system Why? (c) Which ROC (or ROCs) correspond to a causal system? Why? (d) Write a difference equation that relates the input to...

  • 1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this system function. (f) Make a c...

    1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this system function. (f) Make a careful sketch of the frequency response magnitude, i.е., IH(ew), of this system for lwl S T. Label your sketch! 1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this...

  • b) The transfer function of a causal linear time-invariant (LTI) discrete-time system is given by: 1+0.6z1-0.5z1 i Does...

    b) The transfer function of a causal linear time-invariant (LTI) discrete-time system is given by: 1+0.6z1-0.5z1 i Does the system have a finite impulse response (FIR) or infinite 3 impulse response (IIR)? Explain why. ii Determine the impulse response h[n] of the above system iii) Suppose that the system above was designed using the bilinear transformation method with sampling period T-0.5 s. Determine its original analogue transfer function. b) The transfer function of a causal linear time-invariant (LTI) discrete-time system...

  • For the following transfer function of an LTI system: Q.3) For the following transfer function of an ITI system: 8-5 (a...

    For the following transfer function of an LTI system: Q.3) For the following transfer function of an ITI system: 8-5 (a) Sketch the pole-zero plot. (b) If the system is stable, determine the large Why. st pssible ROC. Is the systeu causal? Explairn (c) If the system is causal, determine the lar gest possible ROC. Is the system stable? Explain Q.3) For the following transfer function of an ITI system: 8-5 (a) Sketch the pole-zero plot. (b) If the system...

  • Problem 3 (30 points) An LTI system has an impulse response hin], whose z-transform equals 1-1...

    Problem 3 (30 points) An LTI system has an impulse response hin], whose z-transform equals 1-1 1. List all the poles and zeros of H(2). Sketch the pole-zero plot.. 2. If this system is causal, provide the ROC of H(2) and the expression of hin. case, is this system also stable? 3. If the ROC of H(z) does not exist, provide and the expression of hn.

  • Suppose that the system function of an LTI system is 1+z H(z)=7 (1-12 '\1-22-X1 - 3z-")...

    Suppose that the system function of an LTI system is 1+z H(z)=7 (1-12 '\1-22-X1 - 3z-") (a) Determine the ROC of H(z) if it is known that the system is stable. (b) Determine the ROC of H(z) if it is known that the system is causal. (c) Is it possible for the system to be both stable and causal?

  • 2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the...

    2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the pole-zero plot of the transfer function. b) Show all possible ROC's associated with this transfer function. c) Obtain the impulse response h(t) associated with each ROC of the transfer function. d) Which one (if any) of the impulse responses of part c) is stable? 2. The transfer function of a CT LTI system is given by H(s) (s2...

  • A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called...

    A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called the “transfer function” of the LTI system, is . For each of the following cases, determine the region of convergence (ROC) for H(s) and the corresponding h(t), and determine whether the Fourier transform of h(t) exists. (a) The LTI system is causal but not stable. (b) The LTI system is stable but not causal. (c) The LTI system is neither stable nor causal 8...

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT