Question

Q4. An LTI continuous-time system is specified by dy(t).dyết + 4y(t) = f(t) dt2 *4 dt 4y(t) = f(t) a) Find its unit impulse r

0 0
Add a comment Improve this question Transcribed image text
Answer #1

10 Given differential cpuntion + 4.d yn 4.405110 . Here to find Impulse response i Imput applied Impulse Input a flasin Apply

Add a comment
Know the answer?
Add Answer to:
Q4. An LTI continuous-time system is specified by dy(t).dyết + 4y(t) = f(t) dt2 *4 dt...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3. The input and the output of a stable and causal LTI system are related...

    Problem 3. The input and the output of a stable and causal LTI system are related by the differential equation dy ) + 64x2 + 8y(t) = 2x(t) dt2 dt i) Find the frequency response of the system H(jw) [2 marks] ii) Using your result in (i) find the impulse response of the system h(t). [3 marks] iii) Find the transfer function of the system H(s), i.e. the Laplace transform of the impulse response [2 marks] iv) Sketch the pole-zero...

  • 3. Consider the Linear Time-Invariant (LTI) system decribed by the following differential equation: dy +504 +...

    3. Consider the Linear Time-Invariant (LTI) system decribed by the following differential equation: dy +504 + 4y = u(t) dt dt where y(t) is the output of the system and u(t) is the input. This is an Initial Value Problem (IVP) with initial conditions y(0) = 0, y = 0. Also by setting u(t) = (t) an input 8(t) is given to the system, where 8(t) is the unit impulse function. a. Write a function F(s) for a function f(t)...

  • 2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) -...

    2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) - et u(t). (a) What is the frequency response H (w) of this system? (b) Find and sketch H(w). (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = S(t – 2). (This is a delay of 2.) (a) What is the frequency response H (w) of this...

  • aliasing? A continuous-time system is given by the input/output differential equation 4. H(s) v(t) dy(t) dt dx(t) + 2 (+ x(t 2) dt (a) Determine its transfer function H(s)? (b) Determine its impulse...

    aliasing? A continuous-time system is given by the input/output differential equation 4. H(s) v(t) dy(t) dt dx(t) + 2 (+ x(t 2) dt (a) Determine its transfer function H(s)? (b) Determine its impulse response. (c) Determine its step response. (d) Is the stable? (a) Give two reasons why digital filters are favored over analog filters 5. (b) What is the main difference between IIR and FIR digital filters? (c) Give an example of a second order IIR filter and FIR...

  • A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called...

    A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called the “transfer function” of the LTI system, is . For each of the following cases, determine the region of convergence (ROC) for H(s) and the corresponding h(t), and determine whether the Fourier transform of h(t) exists. (a) The LTI system is causal but not stable. (b) The LTI system is stable but not causal. (c) The LTI system is neither stable nor causal 8...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • The impulse response of a discrete-time (DT) LTI system is given as a. State whether or...

    The impulse response of a discrete-time (DT) LTI system is given as a. State whether or not the system is (i) memoryless, (ii) causal, (ii) stable. Justify your answers mathematically. b. Find an impulse response ho[n] such that the system with impulse response hln] + holn] (the parallel connection) is (i) a memoryless system, (ii) a causal system.

  • For the system described by the following differential equation d3y(t) d2y(t) d2x(t) dy(t) 3 dt dx(t)...

    For the system described by the following differential equation d3y(t) d2y(t) d2x(t) dy(t) 3 dt dx(t) 9 dt y(t) 5x(t) 7 2 6 dt3 dt2 dt2 Express the system transfer function using the pole-zero plot technique a) b) What can be said about the stability of this stem? For the system described by the following differential equation d3y(t) d2y(t) d2x(t) dy(t) 3 dt dx(t) 9 dt y(t) 5x(t) 7 2 6 dt3 dt2 dt2 Express the system transfer function using...

  • dt2 - dt dt Consider the LTI system below with inputs ri(t) and r2(t) and outputs...

    dt2 - dt dt Consider the LTI system below with inputs ri(t) and r2(t) and outputs ci(t) and cu(t): d'ci(t) + 2dcz(t) + 30z(t) = r(t) +r2(t) fo(t) + 3dcz(t) +cı (!) – cz(t) = r2(e) + drale) Determine the transfer function matrix. Hint: Use Laplace transforms. Determine a state variable model for the system in Problem 3 above. Assign state variables 1 = c 2 =ċ, 13 = C), and 3 = -1). In addition, let uj = ri,...

  • d’y(t) 4x(t) = + 3 dy(t) - +2y(t) dt2 +34 dt For the system presented in...

    d’y(t) 4x(t) = + 3 dy(t) - +2y(t) dt2 +34 dt For the system presented in Part 2, sketch its input/output block diagram including any feedback loops. Be explicit in whether you are presenting this figure in a time- domain or s-domain representation.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT