Question

For the system shown below, find a) the modeling equation in x; b) natural frequency; c) damping ratio; d) frequency ratio; e
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Mosinut Sol:- free Budy daigram K(2&o) #alro) & 10 mo ď to Tka EF=0 D P =-(matka) from fig. 2. EMO=0 IÖ - P(28) +k(220 kq) +(+10x4 *(0)2) 3+ (640x.p) 3+ (8X1.6x105x.13) = 100 128.1) sin(+80t) =D 0.5 Ï + 6.4 2 + 12800 X = 20 sin (180) compare by - Mäplease ask if any doubt

Please rate by thums up

Add a comment
Know the answer?
Add Answer to:
For the system shown below, find a) the modeling equation in x; b) natural frequency; c)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • B Frequency Response Modeling Frequency response modeling of a linear system is based on the prem...

    Please explain every step as clearly and detailed as possible. B Frequency Response Modeling Frequency response modeling of a linear system is based on the premise that the dynamics of a linear system can be recovered from a knowledge of how the system responds to sinusoidal inputs. (This will be made mathematically precise in Theorem 13.) In other words, to determine (or iden- tify) a linear system, all one has to do is observe how the system reacts to sinusoidal...

  • Olt) 1422LLA 1. The system at the right is subject to the harmonic + x(t) force...

    Olt) 1422LLA 1. The system at the right is subject to the harmonic + x(t) force f(t) = Fo sin ot as shown, with amplitude 50 N and a forcing frequency due to a motor (not m shown) with speed = 191 rotations per minute (RPM). Mass m can only translate horizontally and the rod is pinned at point O. The parameters are: r = 5 cm, m= 10 kg, Jo = 1 kg m-, kı = 1000 N/m, ka...

  • 7. 150 points) A one-degree-of-freedom system is shown below. (a) (50 points) Derive the differential equation...

    7. 150 points) A one-degree-of-freedom system is shown below. (a) (50 points) Derive the differential equation governing the motion of the system usingq, the (b) (25 points) what are the natural frequency and damping ratto of the system? c) (25 points) Mc)-0 (d) (25 points) (e) (25 points) If M(t) =1.2 sin m N clockwise angular displacement of the disk from equilibrium as the generalized coordinate. 10° and the system is given an initial angulan released from rest what is...

  • 1. Oscillating system performs damped oscillations with frequency 1000 Hz. Determine the frequency of natural oscillations...

    1. Oscillating system performs damped oscillations with frequency 1000 Hz. Determine the frequency of natural oscillations if the resonance frequency is 998 Hz. 2. Amplitude of vibrations during 5 minutes decreased by 2 times, during which time the amplitude reduced by 8 times? 3. For 8 minutes amplitude decreased 8 times. Find damping factor. 4. Determine how much resonance frequency is different from the natural oscillation frequency (1kHz) when the damping factor is 400 s decreased 20 times 6. The...

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mx+cx + kx = A sin(at) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor 5 and the un-damped natural frequency Using the given formulas for...

  • Question B A machine on a viscoelastic foundation (Figure 31.1), modelled as a spring mass-damper system...

    Question B A machine on a viscoelastic foundation (Figure 31.1), modelled as a spring mass-damper system is acted upon by a force modelled as a harmonic force: F(t) = 0.2 sin(wt) Force is given in N and time in seconds. W Figure 31.1 Nos Given numerical values: m = 10 kg C=5 M k = 1000 = 1) draw the correct Free-Body-Diagram and determine the equation of motion [2 marks) 2) determine the natural frequency and the damping ratio of...

  • A 100 [kg] reciprocating internal combustion engine is fitted to a thin, massless beam using a...

    A 100 [kg] reciprocating internal combustion engine is fitted to a thin, massless beam using a vibrations damper. It is known that a machine with a rotating unbalance experiences a frequency squared harmonic excitation. The magnitude of the rotating unbalance is A = m,e = 0.3 [kg. m). 1. Calculate the nondimensional function for the state that has a steady state amplitude of 10 [mm] at a 90 [rad/s] speed. 2- Determine the frequency ratio, natural frequency, and the beams...

  • Frequency Response of a mass-spring-dashpot system Consider a mass-spring-dashpot system driven b...

    Use matlab for the following: Frequency Response of a mass-spring-dashpot system Consider a mass-spring-dashpot system driven by a unit amplitude harmonic input mdx/dt+ cdx/dt + kx- Sin (wt) Use Matlab to simulate time response for ten well-chosen values of w for 3 different values of dimensionless damping factor : 0, between 0 and 1, larger than 1. Record and plot the steady state values of amplitude. Frequency Response of a mass-spring-dashpot system Consider a mass-spring-dashpot system driven by a unit...

  • F Fosin t m k 2 Figure Qla: System is subjected to a periodic force excitation (a) Derive the equation of motion of the...

    F Fosin t m k 2 Figure Qla: System is subjected to a periodic force excitation (a) Derive the equation of motion of the system (state the concepts you use) (b) Write the characteristic equation of the system [4 marks 12 marks (c) What is the category of differential equations does the characteristic equation [2 marks fall into? (d) Prove that the steady state amplitude of vibration of the system is Xk Fo 25 + 0 marks (e) Prove that...

  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT