Question
please answer all pre-lab questions 1 through 5. THANK YOU!!!

this is the manual to give you some background.

Lab Manual Lab 10: String Waves & Resonance Before the lab, read the theory in Sections 1-3 and answer questions on Pre-lab S
Equation (1) shows that ) any given point of the string (at fixed x) oscillates up and down with frequency f,and (i) at any g
Standing waves (n n-1 harmonic # Node # 2L 2L 2L n-3 n + 1 Table 1: Properties of standing waves on a string with fixed ends.

the pre-lab questions..

Question (write down the answers in Pre-lab) (1) Regarding the transverse wave in Figure 1, what are the moving directions of

the pre-lab sheet.

Pre-lab Lab 10: String Waves & Resonance Name: NetID: Grade: /30 Section You are encouraged to have discussions with TA and o
(3) What regression analysis should be used? What do the graphs slope and y-intercept mean and how can one read out μ from t
0 0
Add a comment Improve this question Transcribed image text
Answer #1

3) 2-不 ㄒ从 Inverse of slope give t u y-intercept o2. 2 st 4 T 3 3 5.25 5 5Stmng tension Number of nodes depends on frequeny Jlineay shing denaity is and length of the shing is

Add a comment
Know the answer?
Add Answer to:
please answer all pre-lab questions 1 through 5. THANK YOU!!! this is the manual to give...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Can someone help me do my prelab please. Thank you. Resonance Pre-Lab Assignment (1 point) Recall...

    Can someone help me do my prelab please. Thank you. Resonance Pre-Lab Assignment (1 point) Recall from the "Introduction to Waves" lab that it was easy to calculate the harmonic number (n) and wavelength ) of standing waves on a string by counting the number of antinodes 2L/n). That was a system with nodes fixed at the end points. Today you will be working with a system that has one open end and one closed end (i.e. a node fixed...

  • can you help with a-f please This scenario is for questions 1-2 A simple harmonic oscillator...

    can you help with a-f please This scenario is for questions 1-2 A simple harmonic oscillator at the position x-Ogenerates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50,0 g/m and is stretched with a tension of 5.00 N. a) Find...

  • a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is...

    a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is fixed at both ends and driven at 120 Hz. The tension is varied to obtain standing waves (resonance) on the string. 1. what is the longest wavelength for a standing wave possible on the string? 2. the tension on the string is varies to obtain fourth harmonic a. what is the wavelength of this standing wave? b. what is the wave speed 3. what...

  • please answer all prelab questions, 1-4. This is the prelab manual, just in case you need...

    please answer all prelab questions, 1-4. This is the prelab manual, just in case you need background information to answer the questions. The prelab questions are in the 3rd photo. this where we put in the answers, just to give you an idea. Lab Manual Lab 9: Simple Harmonic Oscillation Before the lab, read the theory in Sections 1-3 and answer questions on Pre-lab Submit your Pre-lab at the beginning of the lab. During the lab, read Section 4 and...

  • please give me answers to all the questions and i would really appreciate that thank you...

    please give me answers to all the questions and i would really appreciate that thank you 6. -0 points My Notes O Ask Your Teache A 10.1 kg object oscillates at the end of a vertical spring that has a spring constant of 2.20 x 104 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N-s/m (a) Calculate the frequency of the dampened oscillation. H2 (b) By what percentage does the amplitude of the...

  • Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review...

    Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review the following topics and relevant textbook sections from Serway / Jewett "Physics for Scientists and Engineers", 9th Ed. • Mathematics of Traveling Waves (Serway 17.2) • Speed of Waves on a String (Serway 17.3) • Superposition of Waves (Serway 18.1) • Standing Waves on a string (Serway 18.2, 18.3) Introduction Imagine two sinusoidal traveling waves with equal amplitudes and frequencies moving in opposite directions....

  • could you help me with g-j please? This scenario is for questions 1-2 A simple harmonic...

    could you help me with g-j please? This scenario is for questions 1-2 A simple harmonic oscillator at the position x-generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t=0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50,0 g/m and Is stretched with a tension of 5.00 N. a) Find the...

  • A steel wire having a mass of 6.30 g and a length of 1.20 m is...

    A steel wire having a mass of 6.30 g and a length of 1.20 m is fixed at both ends and has a tension of 955 N. (a) Find the speed of transverse waves on the wire. 1 405 Incorrect: Your answer is incorrect. m/s (b) Find the wavelength of the fundamental. 2 m (c) Find the frequency of the fundamental. 3 Hz (d) Find the frequency of the second harmonic. 4 Hz (e) Find the frequency of the third...

  • A rope is fixed at both ends and under a tension of 100 N (where N...

    A rope is fixed at both ends and under a tension of 100 N (where N is the symbol for newton, transverse displacement of the rope, in metres, is given by y = (0.5) sin ( x) cos | 4 1 + 100) t where x is distance along the rope in metres, x = 0 at one end of the rope, t is time in seconds, and N 17 (a) What are (i) the length of the rope, (ii...

  • I need help with the 3,5,7 harmonics part of the question Resonance Pre-Lab Assignment (1 point)...

    I need help with the 3,5,7 harmonics part of the question Resonance Pre-Lab Assignment (1 point) Recall from the "Introduction to Waves" lab that it was easy to calculate the harmonic number (n) and wavelength (A) of standing waves on a string by counting the number of antinodes (n -21/n). That was a system with nodes fixed at the end points. Today you will be working with a system that has one open end and one closed end (i.e. a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT