Question

This scenario is for questions 1-2 A simple harmonic oscillator at the position x-Ogenerates a wave on a string. The oscillat

can you help with a-f please

0 0
Add a comment Improve this question Transcribed image text
Answer #1

to M=50 g/m T=5N a) W = 20 f = 0oT radis = 2510327 rad/s. b) f = 1 as it is moving towards are side at origin. o t= t= 3T 31

Add a comment
Know the answer?
Add Answer to:
can you help with a-f please This scenario is for questions 1-2 A simple harmonic oscillator...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • could you help me with g-j please? This scenario is for questions 1-2 A simple harmonic...

    could you help me with g-j please? This scenario is for questions 1-2 A simple harmonic oscillator at the position x-generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t=0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50,0 g/m and Is stretched with a tension of 5.00 N. a) Find the...

  • This scenario is for questions 1-2. A simple harmonic oscillator at the position x = 0...

    This scenario is for questions 1-2. A simple harmonic oscillator at the position x = 0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. a) Find the angular frequency...

  • A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator...

    A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. A simple harmonic oscillator at the position x = 0 generates a wave...

  • A simple harmonic oscillator at the position x = 0 generates a wave on a string....

    A simple harmonic oscillator at the position x = 0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. Question 2 9 pts Consider the piece of string at x...

  • Asimple harmonic oscillator at the point generates a wave on a rope. The oscillator operates at...

    Asimple harmonic oscillator at the point generates a wave on a rope. The oscillator operates at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of and is stretched with a tension of 5.00 N. (a) Determine the speed of the wave. (b) Find the wavelength. (c) Write the wave function for the wave. Assume that the oscillator has its maximum upward displacement at time t=0. (d) Find the maximum...

  • DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on...

    DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on a horizontal rope. The oscillator operates at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of 50.0 g/m, and is stretched with a tension of 5.00 N. Find the maximum transverse acceleration of points on the rope, in m/s? Sample submission: 1230 Note: your answer should be much larger than g. which is...

  • a. In the figure below, a string is tied to a sinusoidal oscillator at P and...

    a. In the figure below, a string is tied to a sinusoidal oscillator at P and runs over a rigid support at Q, and is stretched by a block of mass m. The separation L - 1.77 m, the linear mu = 16 g/m, and the oscillator frequency f = 125 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. If m = 2.000...

  • A simple harmonic oscillator of mass 0.400 kg oscillates with frequency 1.50 Hz. At t0, the...

    A simple harmonic oscillator of mass 0.400 kg oscillates with frequency 1.50 Hz. At t0, the oscillator is at position x 4.00 cm and is moving right with speed 42.0 cm/s a) Find the amplitude and phase constant for the oscillator. b) Write the equation for displacement of the oscillator (with numbers) c) Find the position, velocity, and acceleration at t 3.00 s. di Find the first tw o times the oscillation has position x -2 .75 cm.

  • can someone please help me answer these questions? A simple harmonic oscillator consists of a 10...

    can someone please help me answer these questions? A simple harmonic oscillator consists of a 10 kg mass attached to a spring with a spring constant of 120 N/m. The mass is displaced 20.37 m from the equilibrium position, held motionless, and then released. (a) Calculate the angular frequency and the period. For radians, enterrad" as the unit. For a full list of accepted units, use the "Units Help" link below. Number Units T Number Units (b) Calculate the maximum...

  • help with 1-3 1) A simple harmonic oscillator consists of a 0.100 kg mass attached to...

    help with 1-3 1) A simple harmonic oscillator consists of a 0.100 kg mass attached to a spring whose force constant is 10.0 N/m. The mass is displaced 3.00 cm and released from rest. Calculate (a) the natural frequency fo and period T (b) the total energy , and (c) the maximum speed 2) Allow the motion in problem 1 to take place in a resisting medium. After oscillating for 10 seconds, the maximum amplitude decreases to half the initial...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT