Question

This scenario is for questions 1-2. A simple harmonic oscillator at the position x = 0 generates a wave on a string. The osciQuestion 2 9 pts Consider the piece of string at x = 0.375 cm. g) What is its position at t = 2.5 seconds? Justify your answe

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution in the uploaded images

a solution ve Yo H₂ A= 3cm At t=0, ay(o)=0 u= sogn, Tension = 5N f 12 T (a) (b) Angular frequency, w = 21 W=2x1TX 40 w = 251.(d) Speed of were in a string is given as, E purfing waters W= 50x103 U=10m/s Tu e wave length, A=4 0.25m d 10 yo For remaini

Add a comment
Know the answer?
Add Answer to:
This scenario is for questions 1-2. A simple harmonic oscillator at the position x = 0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator...

    A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. A simple harmonic oscillator at the position x = 0 generates a wave...

  • could you help me with g-j please? This scenario is for questions 1-2 A simple harmonic...

    could you help me with g-j please? This scenario is for questions 1-2 A simple harmonic oscillator at the position x-generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t=0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50,0 g/m and Is stretched with a tension of 5.00 N. a) Find the...

  • A simple harmonic oscillator at the position x = 0 generates a wave on a string....

    A simple harmonic oscillator at the position x = 0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. Question 2 9 pts Consider the piece of string at x...

  • can you help with a-f please This scenario is for questions 1-2 A simple harmonic oscillator...

    can you help with a-f please This scenario is for questions 1-2 A simple harmonic oscillator at the position x-Ogenerates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50,0 g/m and is stretched with a tension of 5.00 N. a) Find...

  • The most general wave function of a particle in the simple harmonic oscillator potential is: V(x,...

    The most general wave function of a particle in the simple harmonic oscillator potential is: V(x, t) = (x)e-1st/ where and E, are the harmonic oscillator's stationary states and their corresponding energies. (a) Show that the expectation value of position is (hint: use the results of Problem 4): (v) = A cos (wt - ) where the real constants A and o are given by: 1 2 Ae-id-1 " Entichtin Interpret this result, comparing it with the motion of a...

  • Asimple harmonic oscillator at the point generates a wave on a rope. The oscillator operates at...

    Asimple harmonic oscillator at the point generates a wave on a rope. The oscillator operates at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of and is stretched with a tension of 5.00 N. (a) Determine the speed of the wave. (b) Find the wavelength. (c) Write the wave function for the wave. Assume that the oscillator has its maximum upward displacement at time t=0. (d) Find the maximum...

  • help with 1-3 1) A simple harmonic oscillator consists of a 0.100 kg mass attached to...

    help with 1-3 1) A simple harmonic oscillator consists of a 0.100 kg mass attached to a spring whose force constant is 10.0 N/m. The mass is displaced 3.00 cm and released from rest. Calculate (a) the natural frequency fo and period T (b) the total energy , and (c) the maximum speed 2) Allow the motion in problem 1 to take place in a resisting medium. After oscillating for 10 seconds, the maximum amplitude decreases to half the initial...

  • DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on...

    DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on a horizontal rope. The oscillator operates at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of 50.0 g/m, and is stretched with a tension of 5.00 N. Find the maximum transverse acceleration of points on the rope, in m/s? Sample submission: 1230 Note: your answer should be much larger than g. which is...

  • 5) A damped simple harmonic oscillator consists of a.40 kg mass oscillating vertically on a spring...

    5) A damped simple harmonic oscillator consists of a.40 kg mass oscillating vertically on a spring with k- 15 N/m with a damping coefficient of .20 kg/s. The spring is initially stretched 17 cm downwards and the mass is released from rest. a) What is the angular frequency of the mass? b) What is the position of the mass at t-3 seconds? c) Sketch a position vs time graph for the mass, showing at least 5 full cycles of oscillation....

  • . Simple Harmonic Motion: An object is attached to a coiled spring. It is pulled down a distance of 6 inches from its equilibrium position and released. The period of the motion is 4 seconds. a....

    . Simple Harmonic Motion: An object is attached to a coiled spring. It is pulled down a distance of 6 inches from its equilibrium position and released. The period of the motion is 4 seconds. a. Show your work for modeling an equation of the objects simple harmonic motion d a cos wt where d is distance from the rest position and the 0. A hand sketch may be helpful, but is not required. period is b. What is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT