Question

Determine the GMR the unconventional stranded conductors shown below 20 radius of each conductor is r 21 21
0 0
Add a comment Improve this question Transcribed image text
Answer #1

se 2r Radius of stranded conductor is r. 19GMR (a) (23) (2(SE) Here d = 8+27+8 = 40. GMR = 16(elu (ur) (88) (or) (8522 = 160.7788 2896-31744 = 19 (2255.65%. 86 = (2255.

Add a comment
Know the answer?
Add Answer to:
Determine the GMR the unconventional stranded conductors shown below 20 radius of each conductor is r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The coaxial cable shown in the figure consists of a solid inner conductor of radius r...

    The coaxial cable shown in the figure consists of a solid inner conductor of radius r 1 and a thin hollow outer conductor of radius r 2. The two conductors carry equal but opposite currents I, uniformly distributed. Find expressions for the strength of the B-field as a function of radial position r for a. Osrsri b.risrsrz c. r>r2 Inner conductor radius rı - - --- - - - ----- - Outer conductor

  • Problem1 In the concentric spherical conductors system shown in Figure 1, the inner conductor has positive charge-q and radius a. The outer conductor has radius b a) Using Gauss' Law determin...

    Problem1 In the concentric spherical conductors system shown in Figure 1, the inner conductor has positive charge-q and radius a. The outer conductor has radius b a) Using Gauss' Law determine the electric field vector E(r) in the region between the conductors (acrcb) and the potential difference Vab between them. b) Calculate E(r) and Vab if the two conductors have a 30 mm, b-40 mm, q 10uc, r-35 mm ε,-8.85x10-12C3(N.m2. For the circuit shown in Figure 2 find: a) the...

  • 3. (20 points) A coaxial cable consists of a solid inner conductor of radius R, surrounded...

    3. (20 points) A coaxial cable consists of a solid inner conductor of radius R, surrounded by a concentric cylindrical tube of inner radius R2 and outer radius R3 (see the figure). The conductors carry equal and opposite currents lo distributed uniformly across their cross sections. Let I 3.00 A, R 0.60 mm. R 4.00 mm, and R -4.80 mm. Find B for (a) (10 points)r 0.40 mm; (b) (10 points)r - 5.00 mm

  • O vertical bundle spacing conductor spacing O O O horizontal bundle spacing The figure above shows...

    O vertical bundle spacing conductor spacing O O O horizontal bundle spacing The figure above shows the conductor configuration of three-phase overhead transmission line with each phase bundle consisting of three solid conductors. All conductors have identical radius of 5cm with 25cm spacing. The bundles are horizontally spaced at 13m and vertically spaced at 10m. Assume the GMR for one conductor is r'. Calculate the value of Deg in meters. Use 4 decimal places in your answer.

  • Problem 1 (20 points) There is a round conductor with a radius of 0.1 m. Suppose the permeability of the conductor and...

    Problem 1 (20 points) There is a round conductor with a radius of 0.1 m. Suppose the permeability of the conductor and the air surrounding the conductor equals to 4π x 10-7 H/m. It is known that the conductor carries a current of 200 A. Calculate the (1) Total flux linkage within the conductor. (10 points) (2) Flux linkage between point 1 and point 2, which are external to the conductor. The distance between point 1 and the center of...

  • A long, cylindrical conductor of radius R carries a current I as shown in the figure...

    A long, cylindrical conductor of radius R carries a current I as shown in the figure below. The current density), however, is not uniform over the cross-section of the conductor but is a function of the radius according to ) = 2br, where b is a constant. Find an expression for the magnetic field magnitude B at the following distances, measured from the axis. (Use the following variables as necessary: Mo, 11, 12, b, R.) (a) '1 <R B =...

  • A long, cylindrical conductor of radius R carries a current I as shown in the figure...

    A long, cylindrical conductor of radius R carries a current I as shown in the figure below. The current density J, however, is not uniform over the cross-section of the conductor but is function of the radius according to J = 5br^2, where b is a constant. Find an expression for the magnetic field magnitude B at the following distances, measured from the axis. (Use the following variables as necessary: mu_0, r_1, r_2, b, R.) r_i < R r_2 >...

  • A coaxial cable, as shown in Figure 2, consists of an inner conductor of radius a,...

    A coaxial cable, as shown in Figure 2, consists of an inner conductor of radius a, surrounded by an outer conductor of radius b, along the same axis. The space is filled with dielectric. The cable is connected to a power supply and it is deposited a charge of +Q uniformly along the length of the surface of the inner conductor and a charge - Q uniformly along the length of the inner surface of the outer conductor. No fields...

  • A spherical capacitor contains a solid spherical conductor of radius 1 mm, surrounded by a dielectric...

    A spherical capacitor contains a solid spherical conductor of radius 1 mm, surrounded by a dielectric material with &r 2.0 out to a radius of 2 mm, then an outer thin spherical conducting shell. Determine the capacitance of the spherical capacitor. (Hint: Suppose you place a charge Q on the inner conductor and a charge -0 on the outer conductor Determine the electric field in the dielectric region between the conductors, then integrate SE .dr to determine the vollage difference...

  • 6. (3 points) A coaxial cable consists of a solid inner conductor of radius Ri, surrounded...

    6. (3 points) A coaxial cable consists of a solid inner conductor of radius Ri, surrounded by a concentric cylindrical tube of inner radius R2 and outer radius Rs (called the shield) as shown in Figure 8. The conductors carry equal and opposite currents, I, distributed uniformly across their cross sections. Determine the magnetic field at a distance r from the axis for: (a) r< Ri (b) Ri < R2 Page 2 (c) R2<r<Rs (d) R3 (e) Plot the magnitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT