Question

VP29.11.10 A long solenoid has a cross-sectional area of 3.00 cm². The current through the windings is decreasing at a rate o

Correct answer is supposed to be:
a) 1.81 e 3 turns / meter
b) 7.70 e -5 V/m

0 0
Add a comment Improve this question Transcribed image text
Answer #1

sol As = area of solenopt. - 30m² - 3x10 m² a 0 Magnetic field in solenoid B = Mon bo Flux through the loop a - BA, di - -22.

Add a comment
Know the answer?
Add Answer to:
Correct answer is supposed to be: a) 1.81 e 3 turns / meter b) 7.70 e...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solenoid with 1200 turns per meter has a diameter of 8.00 cm. A current I...

    A solenoid with 1200 turns per meter has a diameter of 8.00 cm. A current I = 2.60 A flows in the counterclockwise direction in the solenoid. A rectangular loop of length L = 16.0 cm, width w = 12.5 cm, and 2 turns is centered on the axis of the solenoid. (a) Find the magnitude of the magnetic flux through the loop. (b) When the current is increased to 5.39 A, the magnitude of the induced emf in the...

  • A solenoid with 1200 turns per meter has a diameter of 4.00 cm. A current I...

    A solenoid with 1200 turns per meter has a diameter of 4.00 cm. A current I = 2.63 A flows in the clockwise direction in the solenoid. A rectangular loop of length L = 16.0 cm, width w = 12.5 cm, and 2 turns is centered on the axis of the solenoid. (a) Find the magnitude of the magnetic flux through the loop. What is the area over which the flux has a non-zero value? Wb (b) When the current...

  • A solenoid with 1200 turns per meter has a diameter of 9.00 cm. A current I...

    A solenoid with 1200 turns per meter has a diameter of 9.00 cm. A current I 2.51 A flows in the counterclockwise direction (when viewed from location P) in the solenoid. A rectangular loop of length L = 16.0 cm, width w = 12.5 cm, and 2 turns is centered on the axis of the solenoid. te1 (a) Find the magnitude of the magnetic flux through one turn of the rectangular loop (b) When the current is increased to 5.38...

  • a. A coil of wire with 209 circular turns of radius 3.10 cm is in a...

    a. A coil of wire with 209 circular turns of radius 3.10 cm is in a uniform magnetic field along the axis of the coil. The coil has R = 41.5 Ω . At what rate, in teslas per second, must the magnetic field be changing to induce a current of 0.149 A in the coil? b. A closely wound rectangular coil of 90.0 turns has dimensions of 30.0 cm by 47.0 cm . The plane of the coil is...

  • A solenoid consists of 100 turns of a wire in a length of 0.200m. If the...

    A solenoid consists of 100 turns of a wire in a length of 0.200m. If the current in the wire is 3.00 A, what is the magnitude of the magnetic field along the axis of the solenoid? The solenoid has a cross-sectional area of 0.00200m2. If the current drops from 3.00 A to 0 in 1/60 s, what is the magnitude of the average induced emf in the solenoid?

  • 3. Find the magnitude of the induced electric field outside a long solenoid at a distance rZR from its central axis if the solenoid is of radius R and hasn turns of wire per unit length and carri...

    3. Find the magnitude of the induced electric field outside a long solenoid at a distance rZR from its central axis if the solenoid is of radius R and hasn turns of wire per unit length and carries a time-varying current that varies sinusoidally as l = 1-cos cot where I-is maximum current and ω is the angular frequency of the current source. 4. A rectangular coil of N windings had an emf of 40 mV induced in it wher...

  • 4. Toroidal solenoid #1 has mean radius r 1 = 40.0 cm, and cross-sectional area A1...

    4. Toroidal solenoid #1 has mean radius r 1 = 40.0 cm, and cross-sectional area A1 = 16.0 cm2. It is wound uniformly with N1 = 1000 turns of wire. Toroidal solenoid #2 has N2 = 100 turns of wire and is wound tightly around solenoid #1. If the current through the windings of toroidal solenoid #1 is changing at a rate of 1000 A/s, what is the emf induced in toroidal solenoid #2 in mV)?

  • 4. Toroidal solenoid #1 has mean radius r 1 - 40.0 cm, and cross-sectional area A1...

    4. Toroidal solenoid #1 has mean radius r 1 - 40.0 cm, and cross-sectional area A1 - 16.0 cm? It is wound uniformly with N - 1000 turns of wire. Toroidal solenoid #2 has N2 = 100 turns of wire and is wound tightly around solenoid #1. If the current through the windings of toroidal solenoid #1 is changing at a rate of 1000 A/s, what is the emf induced in toroidal solenoid #2 (in mV)? (A) 43.5 (B) 60.0...

  • 4. Toroidal solenoid #1 has mean radius r 1 = 40.0 cm, and cross-sectional area A2...

    4. Toroidal solenoid #1 has mean radius r 1 = 40.0 cm, and cross-sectional area A2 = 16.0 cm2. It is wound uniformly with N4 = 1000 turns of wire. Toroidal solenoid #2 has N2 = 100 turns of wire and is wound tightly around solenoid #1. If the current through the windings of toroidal solenoid #1 is changing at a rate of 1000 A/s, what is the emf induced in toroidal solenoid #2 (in mV)? (A) 43.5 (B) 60.0...

  • A long solenoid has n = 380 turns per meter and carries a current given by...

    A long solenoid has n = 380 turns per meter and carries a current given by I = 34.0(1 − e−1.60t ), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (see figure below). What emf is induced in the coil by the changing current? (Use the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT