Question

A uniform rod with a mass of m = 1.85 kg and a length of l...

A uniform rod with a mass of m = 1.85 kg and a length of l = 2.32 m is attached to a horizontal surface with a hinge. The rod can rotate around the hinge without friction. (See figure.)

The rod is held at rest at an angle of ? = 65.8° with respect to the horizontal surface.

1) What is the angular acceleration of the rod, when it is released?

2) What is the angular speed of the rod, when it hits the horizontal surface?

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A uniform rod with a mass of m = 1.85 kg and a length of l...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A uniform rod with a mass of m = 1.73 kg and a length of l...

    A uniform rod with a mass of m = 1.73 kg and a length of l = 2.44 m is attached to a horizontal surface with a hinge. The rod can rotate around the hinge without friction. (See figure.) Initially the rod is held at rest at an angle of 0 = 70.3° with respect to the horizontal surface. Then the rod is released. What is the angular speed of the rod, when it lands on the horizontal surface? 7.56rad/s...

  • [7.] A uniform rod with mass M, length L, and moment of inertial with respect to...

    [7.] A uniform rod with mass M, length L, and moment of inertial with respect to the center of mass Icm = MLis hinged at one end (point P) so that it can rotate, without friction, around a horizontal axis. The rod is initially held at rest forming an angle with the vertical (see figure) and then released. a) Find the moment of inertia Ip of the rod with respect to point P. b) Find the magnitude of the angular...

  • A uniform rod of mass M = 5.02kg and length L = 1.08m can pivot freely...

    A uniform rod of mass M = 5.02kg and length L = 1.08m can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as seen in the figure below. The rod is held horizontally and then released. At the moment of release, determine the angular acceleration of the rod. Use units of rad/s^2. Mg L L2

  • A uniform rod of mass M = 5.14kg and length L = 1.01m can pivot freely...

    A uniform rod of mass M = 5.14kg and length L = 1.01m can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as seen in the figure below. The rod is held horizontally and then released. At the moment of release, determine the angular acceleration of the rod. Use units of rad/s^2. Determine the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of...

  • D L/2 G L/2 B MO A uniform slender rod of mass M=10 kg and length...

    D L/2 G L/2 B MO A uniform slender rod of mass M=10 kg and length L=3m, is hinged at A. The rod is held in a horizontal position against А the spring (k= 200kN/m) at G, the spring being in compression. When the rod is released from this horizontal position k Rigid (the spring is not connected to the rod), support it will rotate about the frictionless hinge Spring A in a vertical plane. Determine: support a. The minimum...

  • 4(12 points) A uniform rod of length L and mass M is attached at one end...

    4(12 points) A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in Figure. The rod is released from rest in the horizontal position. (a)What are the initial angular acceleration of the rod and the initial translational acceleration of its right end (as shown in Fig.a)? (b)What is its angular speed when the rod reaches its lowest position (as...

  • A uniform rod of length L (2.00 m) and mass M (5.00 Kg) is free to...

    A uniform rod of length L (2.00 m) and mass M (5.00 Kg) is free to rotate on a frictionless pin passing through one end. The rod is released from rest in the horizontal position, (a) What is its angular speed when the rod reaches its lowest position? (b) What arc the linear speed of the center of mass and that of the lowest point on the rod when it is in the vertical position?

  • Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k...

    Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in the figure. The rod is released from rest in the horizontal position. What are the initial angular acceleration of the rod and the initial translational acceleration of its right end Pivot SOLVE IT Mg A rod is free to rotate around...

  • 1. A uniform rod of mass M = 5.01kg and length L = 1.18m can pivot...

    1. A uniform rod of mass M = 5.01kg and length L = 1.18m can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as seen in the figure below. 2. Determine the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of the rod, as shown. Please show work for both questions radusn2. The rod is held horizontally and then released. At the moment...

  • Problem 4 A uniform slender rod of length L- 3 m and mass 2 kg rotates freely (no friction) about...

    Problem 4 A uniform slender rod of length L- 3 m and mass 2 kg rotates freely (no friction) about hinge at A. Att- 0, the initial angle is B 30 and the initial angular velocity SQUARED is 4.9 rads/s in the counter-clockwise direction. a) What are the hinge reaction forces, acceleration of the center of mass, angular velocity (squared) and angular acceleration as functions of B, b) what are the hinge reaction forces, acceleration of the center of mass...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT