Question

Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in the figure. The rod is released from rest in the horizontal position. What are the initial angular acceleration of the rod and the initial translational acceleration of its right end Pivot SOLVE IT Mg A rod is free to rotate around a pivot at the left end. The gravi onal force on the rod acts at Conceptualize Imagine what happens to the rod in the its center of mass. figure when it is released. It rotates clockwise around the pivot at the left end. Categorize The rod is categorized as a rigid object under a net torque. The torque is due only to the gravitational force on the rod if the rotation axis is chosen to pass through the pivot in the figure. We cannot categorize the rod as a rigid object under constant angular acceleration because the torque exerted on the rod and therefore the angular acceleration of the rod vary with its angular position. Analyze The only force contributing to the torque about an axis through the pivot is the gravitational force Mg exerted on the rod. (The force exerted by the pivot on the rod has zero torque about the pivot because its moment arm is zero To compute the torque on the rod e assume the gravitational force acts at the center of mass of the rod as shown in the figure Write an expression for the magnitude of Mg the torque due to the gravitational force about an is through the pivot:

0 0
Add a comment Improve this question Transcribed image text
Answer #1

soluion about 12 , เช่า 2. Plro 3 8 1.6 m rata m Phank yoy

Add a comment
Know the answer?
Add Answer to:
Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4(12 points) A uniform rod of length L and mass M is attached at one end...

    4(12 points) A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in Figure. The rod is released from rest in the horizontal position. (a)What are the initial angular acceleration of the rod and the initial translational acceleration of its right end (as shown in Fig.a)? (b)What is its angular speed when the rod reaches its lowest position (as...

  • The figure shows a thin rod, of length L = 1.6 m and negligible mass, that...

    The figure shows a thin rod, of length L = 1.6 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 9.1 kg is attached to the other end. The rod is pulled aside to angle θ0 = 6.4° and released with initial velocity v Overscript right-arrow EndScripts Subscript 0 = 0. As the ball descends to its lowest point, (a) how much work does the gravitational...

  • A uniform rod of mass M = 5.14kg and length L = 1.01m can pivot freely...

    A uniform rod of mass M = 5.14kg and length L = 1.01m can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as seen in the figure below. The rod is held horizontally and then released. At the moment of release, determine the angular acceleration of the rod. Use units of rad/s^2. Determine the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of...

  • 11. A uniform thin rod of length L and mass M, pivoted at one end as...

    11. A uniform thin rod of length L and mass M, pivoted at one end as shown above, is held horizontal and then released from rest. Ignore all effects due to friction. (a) Find the angular speed of the rod as it sweeps through the vertical position. solution: 、13g / L (b) Find the force exerted on the rod by the pivot at this instant. solution Mg (c) Starting from the horizontal position, what initial angular speed would be needed...

  • The figure shows a thin rod, of length L = 2.10 m and negligible mass, that...

    The figure shows a thin rod, of length L = 2.10 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 9.20 kg is attached to the other end. The rod is pulled aside to angle θ0 = 22.0° and released with initial velocity = 0. As the ball descends to its lowest point, (a) how much work does the gravitational force do on it and (b)...

  • (Figure 1) A thin rod of mass mr and length 2L is allowed to pivot freely about its center, as shown in the diagram.

    Pivoted Rod with Unequal Masses (Figure 1) A thin rod of mass mr and length 2L is allowed to pivot freely about its center, as shown in the diagram. A small sphere of mass m1 is attached to the left end of the rod, and a small sphere of mass m2 is attached to the right end. The spheres are small enough that they can be considered point particles. The gravitational force acts downward, with the magnitude of the gravitational acceleration...

  • A uniform rod with a mass of m = 1.85 kg and a length of l...

    A uniform rod with a mass of m = 1.85 kg and a length of l = 2.32 m is attached to a horizontal surface with a hinge. The rod can rotate around the hinge without friction. (See figure.) The rod is held at rest at an angle of ? = 65.8° with respect to the horizontal surface. 1) What is the angular acceleration of the rod, when it is released? 2) What is the angular speed of the rod,...

  • A uniform rod of mass M = 5.02kg and length L = 1.08m can pivot freely...

    A uniform rod of mass M = 5.02kg and length L = 1.08m can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as seen in the figure below. The rod is held horizontally and then released. At the moment of release, determine the angular acceleration of the rod. Use units of rad/s^2. Mg L L2

  • 1. A uniform rod of mass M = 5.01kg and length L = 1.18m can pivot...

    1. A uniform rod of mass M = 5.01kg and length L = 1.18m can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as seen in the figure below. 2. Determine the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of the rod, as shown. Please show work for both questions radusn2. The rod is held horizontally and then released. At the moment...

  • 8. A uniform rod of length 1.0 m and mass 0.80 kg has small 0.30 kg...

    8. A uniform rod of length 1.0 m and mass 0.80 kg has small 0.30 kg attached to either end. It is made to rotate in a horizontal plane about an axis through its center The system starts from rest and after 8.0 s it is rotating at 5.0 a) What is the object's angular acceleration in ind? 0.30 kg 0.kg 0.30 kg 1.0 m b) How many revolutions did the object make in the 8.0 s it was speeding...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT