Question
Steps needed.

Thanks!
4. A 0.200 kg metal rod carrying a current of 10.0 A glides on two horizontal rails 0.500 rm apart. What vertical magnetic field is required to keep the rod moving at a constant speed if the coefficient of kinetic friction between the rod and rails is 0.100?
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Steps needed. Thanks! 4. A 0.200 kg metal rod carrying a current of 10.0 A glides...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A-B please Problem #5 A metal rod of mass m carrying a current glides on two...

    A-B please Problem #5 A metal rod of mass m carrying a current glides on two horizontal rails a distance d apart. If the coefficient of kinetic friction between the rod and rails is , what vertical magnetic field is required to keep the rod moving at a constant speed? (20 points) Draw diagram etc.. (b) A 0.150 kg metal rod carrying a current of 10.0 A glides on two horizontal rails 0.500m apart. If the coefficient of kinetic friction...

  • A 0.100-kg metal rod carrying a current of 15.0 A glides on two horizontal rails 0.550...

    A 0.100-kg metal rod carrying a current of 15.0 A glides on two horizontal rails 0.550 m apart and 2.0 m long, (a) If the coefficient of kinetic friction between the rod and rails is 0.120, what vertical magnetic field is required to keep the rod moving at a constant speed? (b) If the friction between the rod and rail is reduced zero, the rod will accelerate. If the rod starts from rest at the one end of the rails,...

  • A 0.300-kg metal rod carrying a current of 12.0 A glides on two horizontal rails 0.590...

    A 0.300-kg metal rod carrying a current of 12.0 A glides on two horizontal rails 0.590 m apart and 2.0 m long. (a) If the coefficient of kinetic friction between the rod and rails is 0.160, what vertical magnetic field is required to keep the rod moving at a constant speed? (b) If the friction between the rod and rail is reduced zero, the rod will accelerate. If the rod starts from rest at the one end of the rails,...

  • A metal rod of mass m carrying a current I glides on two horizontal rails a...

    A metal rod of mass m carrying a current I glides on two horizontal rails a distance d apart. If the coefficient of kinetic friction between the rod and rails is μk, what vertical magnetic field is required to keep the rod moving at a constant speed? (Use any variable or symbol stated above along with the following as necessary: g.) B=

  • A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The r...

    A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The rails are connected at the bottom so that the metal rod and rails form a loop that has a resistance of 52.0 Ω There is a 2.00 T vertical magnetic field throughout the region of the rails. The rod starts from rest and there is no friction between the rod and the rails. a) (3 points) Find an...

  • A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are...

    A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The rails are connected at the bottom so that the metal rod and rails form a loop that has a resistance of 52.0 Ω. There is a 2.00 T vertical magnetic field throughout the region of the rails. The rod starts from rest and there is no friction between the rod and the rails a) (3 points) Find an...

  • A 1.0 kg copper rod rests on two horizontal rails 1.0 m and carries a current...

    A 1.0 kg copper rod rests on two horizontal rails 1.0 m and carries a current of 50 A from one rail to the other. The coefficient of static friction between the rod and the rails is 0.60. What is the smallest magnetic field (not necessarily vertical) that would cause the rod to slide?

  • A 2.4 kg copper rod rests on two horizontal rails (see figure below) 1.2 m apart...

    A 2.4 kg copper rod rests on two horizontal rails (see figure below) 1.2 m apart and carries a current of 65 A from one rail to the other. The coefficient of static friction between rod and rails is 0.51. What are the magnitude and angle (relative to the vertical) of the smallest magnetic field that puts the rod on the verge of sliding? (Based on the bottom picture, define to the right as the +x direction and up as...

  • 1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right...

    1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right on metal rails as shown below. The rails have no friction and no electrical resistance. A uniform magnetic field of magnitude 4.00 T is directed into the paper. What is the magnitude of the force that an external agent would need to exert on the rod to keep it moving to the right at a speed of 10.0 m/s (in N)? (A) 20.0 (B)...

  • 1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right...

    1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right on metal rails as shown below. The rails have no friction and no electrical resistance. A uniform magnetic field of magnitude 4.00 T is directed into the paper. What is the magnitude of the force that an external agent would need to exert on the rod to keep it moving to the right at a speed of 10.0 m/s (in N)? (A) 20.0 (B)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT