Question

A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The rails are c
0 0
Add a comment Improve this question Transcribed image text
Answer #1

dt ))39 (5372)53778/ r 5.763 A 冫广(637s)(637.7 ) (0743 52 R-.uschsupti」:dt(ngh):havtin 4 2. mechanic,J (8) 124 S w

Add a comment
Know the answer?
Add Answer to:
A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are...

    A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The rails are connected at the bottom so that the metal rod and rails form a loop that has a resistance of 52.0 Ω. There is a 2.00 T vertical magnetic field throughout the region of the rails. The rod starts from rest and there is no friction between the rod and the rails a) (3 points) Find an...

  • A conducting rod is pulled horizontally with constant force F=3.20 N along a set of rails...

    A conducting rod is pulled horizontally with constant force F=3.20 N along a set of rails separated by d-0.240 m. A uniform magnetic field B= 0.600 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 4.50 m Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive direction for...

  • The figure shows a 11-cm-long metal rod pulled along twofrictionless, conducting rails at a constant...

    The figure shows a 11-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.9 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω . (Figure 1)FigureThe figure shows a vertical rod sliding along a pair of horizontal rails to the left at speed v. The rails are connected at their left ends. Magnetic field B of 1.4 teslas is directed into the page in the whole region.Part AWhat is...

  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • A conducting rod is pulled horizontally with constant force F-4.40 N along a set of rails...

    A conducting rod is pulled horizontally with constant force F-4.40 N along a set of rails separated by d= 0.340 m. A uniform magnetic field B=0.500 T is directed into the page. There is no friction between the rod and the rails, and therod moves with constant velocity v= 3.60 m/s Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive direction for emf...

  • A conducting rod is pulled horizontally with constant force F= 4.80 N along a set of...

    A conducting rod is pulled horizontally with constant force F= 4.80 N along a set of rails separated by d= 0.620 m. A uniform magnetic field B= 0.500 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 6.60 m/s. A.) Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the...

  • A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B...

    A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B pointing out of the page as shown. The bar is moving at a speed v as indicated to the right. The rails have negligible electrical resistance compared to the crossbar, and you may neglect friction in the sliding of the crossbar. (a) What is the direction of the induced current flowing in the crossbar? Explain your reasoning. (b) Systematically develop an expression for the...

  • A 0.100-kg metal rod carrying a current of 15.0 A glides on two horizontal rails 0.550...

    A 0.100-kg metal rod carrying a current of 15.0 A glides on two horizontal rails 0.550 m apart and 2.0 m long, (a) If the coefficient of kinetic friction between the rod and rails is 0.120, what vertical magnetic field is required to keep the rod moving at a constant speed? (b) If the friction between the rod and rail is reduced zero, the rod will accelerate. If the rod starts from rest at the one end of the rails,...

  • A 0.300-kg metal rod carrying a current of 12.0 A glides on two horizontal rails 0.590...

    A 0.300-kg metal rod carrying a current of 12.0 A glides on two horizontal rails 0.590 m apart and 2.0 m long. (a) If the coefficient of kinetic friction between the rod and rails is 0.160, what vertical magnetic field is required to keep the rod moving at a constant speed? (b) If the friction between the rod and rail is reduced zero, the rod will accelerate. If the rod starts from rest at the one end of the rails,...

  • A metal rod of length l = 19 cm moves at constant speed v on rails of negligible resistance that terminate in a resistor R = 0.2

    A metal rod of length l = 19 cm moves at constant speed v on rails of negligible resistance that terminate in a resistor R = 0.2 ?, as shown in the figure above. A uniform and constant magnetic field B = 1 T ia normal to the plane of the rails. The induced current is I =1 A and flows in the direction shown. Find :a) the speed v;m/sb) the external force needed to keep the rod moving at v.N to the right.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT