Question

A mass attached to a spring is suspended as shown.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

spring potential will be maximum at the extream ends of the motion as the stretched length of the spring will be maximum at those points (A and E)

gravitational potential will be maximum at maximum height (A)

kinetic energy will be maximum at the equilibrium position as total energy remains constant anf at equilibrium spring potential energy is 0 (C and G)

total energy remains conserved so it'll be same everywhere

Add a comment
Know the answer?
Add Answer to:
A mass attached to a spring is suspended as shown. When the mass is at rest...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 11 1 pts A mass is suspended vertically from a spring so it is at...

    Question 11 1 pts A mass is suspended vertically from a spring so it is at rest at the equilibrium position. The mass is pulled straight down to an extension x and released so that it oscillates about the equilibrium position. The elastic potential energy of the mass is zero when the mass is at its maximum upward travel at the equilibrium point at its maximum lower travel

  • A 14 kg block on a horizontal surface is attached to a horizontal spring of spring...

    A 14 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 5.7 kN/m. The block is pulled to the right so that the spring is stretched 15 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 44 N. (a) What is the kinetic energy of the block when it has moved 3.0 cm from...

  • (b) (3 points) A ball of mass m is attached to a spring (with unstretched length...

    (b) (3 points) A ball of mass m is attached to a spring (with unstretched length lo and spring constant k) which hangs vertically. The ball is initially held at rest with the spring at its unstretched length. Then, the ball is let go. Consider the instant when the ball reaches its lowest position (the spring stretches to its maximum length and s instantaneously at rest), I was done by the spring force during this process (that is from release...

  • PLEASE ANSWER STEP BY STEP A thrill-seeking cat with mass 4.00 kg is attached by a...

    PLEASE ANSWER STEP BY STEP A thrill-seeking cat with mass 4.00 kg is attached by a harness to an ideal spring of negligible mass and oscillates vertically in SHM. The amplitude is 0.050 m, and at the highest point of the motion the spring has its natural unstretched length. Calculate the elastic potential energy of the spring (take it to be zero for the unstretched spring), the kinetic energy of the cat, the gravitational potential energy of the system relative...

  • 2. A spring with constant 1.46 N/m has an unknown mass attached to it. It is...

    2. A spring with constant 1.46 N/m has an unknown mass attached to it. It is pulled a set distance and released from rest. The resulting graph for position of the unknown mass as a function of time is shown below. Oscillating Mass-Spring System 1 position (m) 0.8 0.6 04 02 0 -0.2 5 -0.4 -0.8 times) a) What is the frequency? (1 point) b) What is the amplitude? (1 point) c) What is the angular frequency? (1 points) d)...

  • a block with a mass of 2.5 kg starts from rest at the top of the...

    a block with a mass of 2.5 kg starts from rest at the top of the apparatus shown below. it then slides without friction down the incline, and collides with a spring attached to a wall. The spring has a spring constant of K=120N/m. Using the principle of energy conservation, a. find the initial gravitational potential energy of the block at point A b. find the kinetic energy of the block at point B c. what is the velocity of...

  • A vertical spring has a mass of 500 g attatched to it, the system is at equilibrium. When pulled ...

    A vertical spring has a mass of 500 g attatched to it, the system is at equilibrium. When pulled 30 cm down, it takes 12.4 seconds to finish 10 oscillations. The amplitude is approximately 20 cm througout. a. what is the spring constant? when the system is at rest, the mass is 40 cm above a flat surface. Find the potential energy of the spring, the gravitational potential energy of the mass, and the kinetic energy of the mass when:...

  • Problem 6. A block of mass 400 grams is suspended from a vertical spring of force...

    Problem 6. A block of mass 400 grams is suspended from a vertical spring of force constant 25.0N/m. (a) How much is the stretch in the spring when the system is in equilibrium? The block is pulled a distance of 20.0 cm below its equilibrium position and released (b) What is the total energy of the system when the block is released? (Take the gravitational potential energy to be zero in the equilibrium position.) (c) What is the speed of...

  • A spring stress 0.150 m when a 0.300 kg mass is gently suspended from it as...

    A spring stress 0.150 m when a 0.300 kg mass is gently suspended from it as fig below. The spring is then set up horizontally with 0.300 kg mass resting on a frictionless table. The mass is pulled so that the spring is stretched 0.100 m from the equilibrium point, and released from rest. Determine: a) the spring stiffness constant K; b) the amplitude of the horizontal oscillation A; c) the magnitude of the maximum velocity Vmax? d) the magnitude...

  • + 0 A cart attached to a spring is given an initial push, Displacement, cm displacing...

    + 0 A cart attached to a spring is given an initial push, Displacement, cm displacing it from its 4 A B equilibrium position. A 2 graph of displacement as a ус function of time for the 2 cart is shown at right. The -2-1 system has a total initial energy of 12 J and there is no friction. Five points are labeled A-E in the graph. For each labeled point, complete the bar chart below for the kinetic energy...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT