Question

Find A+ and A+A and AA+ and x+ (shortest length least square solution) for this matrix A UVT (the SVD b: s given below)and th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

From the singular value decomposition (SVD) of a matrix A, we can calculate A^{\dagger} as follows:

Let A=U\Sigma V^{T} be SVD of the matrix A, then A^{\dagger}=V\Sigma^{\dagger} U^{T} ,where \Sigma^{\dagger} is calculated by replacing every nonzero entry by its reciprocal and transposing the resulting matrix.

Here,

A=\begin{bmatrix} 3\\4\end{bmatrix}=\begin{bmatrix} .6&-.8\\.8&.6\end{bmatrix}\begin{bmatrix}5\\0 \end{bmatrix}\begin{bmatrix}1 \end{bmatrix}=U\Sigma V^{T}, where U=\begin{bmatrix} .6&-.8\\.8&.6\end{bmatrix},~\Sigma=\begin{bmatrix}5\\0 \end{bmatrix},~ V^{T}=\begin{bmatrix}1 \end{bmatrix} .

So,

U^{T}=\begin{bmatrix} .6&.8\\-.8&.6\end{bmatrix},~\Sigma^{\dagger}=\begin{bmatrix}1/5\\0 \end{bmatrix}^{T}=\begin{bmatrix} 1/5&0\end{bmatrix},~ V=\begin{bmatrix}1 \end{bmatrix}.

Thus,

A^{\dagger}=V\Sigma^{\dagger}U^{T}\\ \Rightarrow A^{\dagger}=\begin{bmatrix}1 \end{bmatrix}\begin{bmatrix} 1/5&0\end{bmatrix}\begin{bmatrix} .6&.8\\-.8&.6\end{bmatrix}\\ \Rightarrow A^{\dagger}=\begin{bmatrix}1 \end{bmatrix}\begin{bmatrix} 0.2&0\end{bmatrix}\begin{bmatrix} .6&.8\\-.8&.6\end{bmatrix}\\ \Rightarrow A^{\dagger}=\begin{bmatrix}0.12&0.16 \end{bmatrix}

Now,

AA^{\dagger}=\begin{bmatrix}3\\4\end{bmatrix} \begin{bmatrix}0.12&0.16 \end{bmatrix}\\ \Rightarrow AA^{\dagger}=\begin{bmatrix}0.36&0.48\\0.48&0.64 \end{bmatrix}

and

A^{\dagger}A=\begin{bmatrix}0.12&0.16 \end{bmatrix}\begin{bmatrix}3\\4\end{bmatrix} \\ \Rightarrow A^{\dagger}A=\begin{bmatrix}0.36+0.64\end{bmatrix}\\ \Rightarrow A^{\dagger}A=\begin{bmatrix}1\end{bmatrix}.

Shortest length least square solution to the system Ax=b is x=A^{\dagger}b.

Here,

for A=\begin{bmatrix}3\\4 \end{bmatrix} ,A^{\dagger}=\begin{bmatrix}0.12&0.16 \end{bmatrix} and b_{1}=\begin{bmatrix}3\\4 \end{bmatrix} , we have shortest length least square solution to the system Ax=b_{1} is

x=A^{\dagger}b_{1}\\ \Rightarrow x=\begin{bmatrix}0.12&0.16\end{bmatrix}\begin{bmatrix}3\\4 \end{bmatrix}\\ \Rightarrow x=\begin{bmatrix} 0.36+0.64\end{bmatrix}\\ \Rightarrow x=\begin{bmatrix} 1\end{bmatrix}

So, x^{\dagger}=\begin{bmatrix} 1\end{bmatrix} .

And for A=\begin{bmatrix}3\\4 \end{bmatrix} , A^{\dagger}=\begin{bmatrix}0.12&0.16 \end{bmatrix} and b_{2}=\begin{bmatrix} -4\\3\end{bmatrix} , we have shortest length least square solution to the system Ax=b_{2} is

x=A^{\dagger}b_{2}\\ \Rightarrow x=\begin{bmatrix}0.12&0.16\end{bmatrix}\begin{bmatrix}-4\\3 \end{bmatrix}\\ \Rightarrow x=\begin{bmatrix} -0.48+0.48\end{bmatrix}\\ \Rightarrow x=\begin{bmatrix} 0\end{bmatrix}

So, x^{\dagger}=\begin{bmatrix} 0\end{bmatrix} .

Add a comment
Know the answer?
Add Answer to:
Find A+ and A+A and AA+ and x+ (shortest length least square solution) for this matrix...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT