Question

2. Consider a point particle of mass m undergoing a one-dimensional motion under the action of a force F(x) =-kx + az where k and ? are positive constants. Follow Example 3 in the lecture notes on Differential equations and discover an integral of motion I(x,v) - const for this mechanical system. Plot the integral curves (x, v) in phase space, by using the ContourPlot command in Mathematica to plot the lines of constant I(x,v). Set significance. (6 points)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

iven 四ne-dimeneional nuotion aue hueitiue constants dv 3 m mn 3 m

Add a comment
Know the answer?
Add Answer to:
2. Consider a point particle of mass m undergoing a one-dimensional motion under the action of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a particle of mass m under the action of the one-dimensional harmonic oscillator potential. The Hamiltonian is...

    Consider a particle of mass m under the action of the one-dimensional harmonic oscillator potential. The Hamiltonian is given by Knowing that the ground state of the particle at a certain instant is described by the wave function mw 1/4 _mw2 Th / calculate (for the ground state): a) The mean value of the position <x> (2 marks) b) The mean value of the position squared < x2 > (2 marks) c) the mean value of the momentum <p> (2...

  • Consider a particle of mass m moving in a one-dimensional potential of the form V. for...

    Consider a particle of mass m moving in a one-dimensional potential of the form V. for 0<x<b, V(a) = 0 for Islal<e, for 1212, with V., b and c positive constants and c>b. a Explain why the wave function of the particle can be assumed to be cither an even function or an odd function of a. b For the case that the energy E of the particle is in the range 0<ESV., find the (unnormalized) even cigenfunctions and give...

  • 4. A particle of mass m 2 kg moves under the potential energy function U(x.y.z)- (kx...

    4. A particle of mass m 2 kg moves under the potential energy function U(x.y.z)- (kx + 2 k2y2 +3 k3z3) where k 1N. a. Suppose the particle has speed vo3 m/s when it passes through the origin. What will its speed be if and when it passes through the point (1,1.1)? b. Suppose the particle's speed vo at the origin is not known and that the point (1,1,1) is a turning point of the motion (a point where v0)....

  • 3. A particle of mass m moves in one dimension, and has position r(t) at time t. The particle has...

    Mechanics. 3. A particle of mass m moves in one dimension, and has position r(t) at time t. The particle has potential energy V(x) and its relativistic Lagrangian is given by where mo is the rest mass of the particle and c is the speed of light (a) Writing qr and denoting by p its associated canonical momenta, show that the Hamiltonian is given by (show it from first principles rather than using the energy mzc2 6 marks (b) Write...

  • tthe-independent Help: The operator expression dimensions is given by H 2m r ar2 [2] A particle of mass m is in a three-dimensional, spherically symmetric harmonic oscillator potential given by V...

    tthe-independent Help: The operator expression dimensions is given by H 2m r ar2 [2] A particle of mass m is in a three-dimensional, spherically symmetric harmonic oscillator potential given by V(r)2r2. The particle is in the I-0 state. Noting that all eigenfunetions must be finite everywhere, find the ground-state radial wave-function R() and the ground-state energy. You do not have to nor oscillator is g (x) = C x exp(-8x2), where C and B are constants) harmonic malize the solution....

  • 2. Consider a mass m moving in R3 without friction. It is fasten tightly at one...

    2. Consider a mass m moving in R3 without friction. It is fasten tightly at one end of a string with length 1 and can swing in any direction. In fact, it moves on a sphere, a subspace of R3 1 0 φ g 2.1 Use the spherical coordinates (1,0,) to derive the Lagrangian L(0,0,0,0) = T-U, namely the difference of kinetic energy T and potential energy U. (Note r = 1 is fixed.) 2.2 Calculate the Euler-Lagrange equations, namely...

  • Vibrational Motion Introduction If an object is following Hooke’s Law, then Fnet = -kx = ma...

    Vibrational Motion Introduction If an object is following Hooke’s Law, then Fnet = -kx = ma Since acceleration is the second derivative of position with respect to time, the relationship can be written as the differential equation: kx = m δ2xδt2/{"version":"1.1","math":"<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>m</mi><mo>&#160;</mo><mfrac bevelled="true"><mrow><msup><mi>&#948;</mi><mn>2</mn></msup><mi>x</mi></mrow><mrow><mi>&#948;</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math>"} Methods for solving differential equations are beyond the scope of this course; in fact, a class in differential equations is usually a requirement for a degree in engineering or physics. However, the solution to this particular differential...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT