Question

(a) (i) Discuss the eigenvalues of a quantum mechanical harmonic oscillator (QMHO). (ii) What is the significance of the eige

(a) (i) Discuss the eigenvalues of a quantum mechanical harmonic oscillator(QMHO).

(ii) What is the significance of the eigenfunctions of the QMHO to be non-zero

outside the harmonic potential?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

8 d For QMHO , Ena (nt I) to For no For to ground state energy. So, Eto at ground state. - Even at ground state, some minimumplease like. Thank you

Add a comment
Know the answer?
Add Answer to:
(a) (i) Discuss the eigenvalues of a quantum mechanical harmonic oscillator(QMHO). (ii) What is the significance...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an...

    3. The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Consider an electron trapped by a one-dimensional harmonic potential V(x)=-5 mo?x” (where m is the electron mass, o is a constant angular frequency). In this case, the Schrödinger equation takes the following form, **...

  • One can assume a quantum mechanical harmonic oscillator model for the N-H stretching vibrations of the...

    One can assume a quantum mechanical harmonic oscillator model for the N-H stretching vibrations of the peptide bonds. For the harmonic oscillator the energy levels are given by: E, = (V+})ħw where: W= /k/ u In the above express k is the force constant and u is the reduced mass. (a) Write the Schrödinger equation in terms of the reduced mass u, being sure to define all symbols. (b) Calculate the frequency of the infrared radiation absorbed by the N-H...

  • question no 4.22, statistical physics by Reif Volume 5 4.92 Mean energy of a harmonic oscillator A harmonic oscillator...

    question no 4.22, statistical physics by Reif Volume 5 4.92 Mean energy of a harmonic oscillator A harmonic oscillator has a mass and spring constant which are such that its classical angular frequency of oscllation is equal to w. In a quantum- mechanical description, such an oscillator is characterized by a set of discrete states having energies En given by The quantum number n which labels these states can here assume all the integral values A particular instance of a...

  • A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy ,...

    A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy , and ф are the usual spherical coordinates. (a) In the form given above, why is it clear that the potential energy function V) is (b) For this problem, it will be more convenient to express this spherically-symmetric where r , spherically symmetric? A brief answer is sufficient. potential energy in Cartesian coordinates x, y, and z as physically the same potential energy as the...

  • A particle with mass m is in a one-dimensional simple harmonic oscillator potential. At time t = 0 it is described by the state where lo and l) are normalised energy eigenfunctions corresponding to e...

    A particle with mass m is in a one-dimensional simple harmonic oscillator potential. At time t = 0 it is described by the state where lo and l) are normalised energy eigenfunctions corresponding to energies E and Ey and b and c are real constants. (a) Find b and c so that (x) is as large as possible. b) Write down the wavefunction of this particle at a time t later c)Caleulate (x) for the particle at time t (d)...

  • 2. Two noninteracting particles, each of mass m, are in the 1-D harmonic oscillator potential Describe...

    2. Two noninteracting particles, each of mass m, are in the 1-D harmonic oscillator potential Describe their ground state and the next two excited states, that is, their corresponding (i) wave functions, (i) energy eigenvalues, and (ii) degeneracies if two particles are (a) distinguishable particles, (b) the identical bosons, and (c) the identical fermions. 3. Suppose one particle is in the ground state, and the other is in the first excited state for tw particles described in Prob. 2. Calculate...

  • 2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the...

    2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the wave function for the ground state, but not the value of the constant A. Determine what it has to be if the ground state is normalized. (b) Suppose a classical particle has an energy equal to the ground state energy E. This particle will, of course, oscillate back and forth as though it were attached to a spring. What would its turning points be?...

  • In class we solved the quantum harmonic oscillator problem for a diatomic molecule. As part of...

    In class we solved the quantum harmonic oscillator problem for a diatomic molecule. As part of that solution we transformed coordinates from x, the oscillator displacement coordinate, to the unitless, y using the relationship where μ is the reduced mass of the diatomic molecule and k is the force constant. The solutions turned out to be: w(y)N,H, (y)e Where N is a normalization constant, H,(v) are the Hermit polynomials and v is the quantum number with values of v0,1,2,3,.. The...

  • 4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D:...

    4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D: p21 ÃO = + mwf?, where m is the mass of the particle and w is the angular frequency. Now, let us perturb the oscillator with a quadratic potential. The perturbation is given by Î' = zgmw?h?, where g is a dimensionless constant and g <1. (a) Write down the eigen-energies of the unperturbed Hamiltonian. (b) In Lecture 3, we introduced the lowering (or...

  • Need the answer for b) 1. The idea of a quantum fluctuation is central to much...

    Need the answer for b) 1. The idea of a quantum fluctuation is central to much of physics, including cosmology; for example, it is believed that the current structure of the Universe arose from small initial quantum fluctuations that were stretched out during a period of rapid Universal expansion called inflation. As we will discuss later, it turns out that we can represent quantum systems as an infinite collection of harmonic oscillators. For each of the harmonic oscillators, the amplitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT