Question

1) Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative...

1) Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries −3.00 pC and the other −3.30 pC, and each cell can be modeled as a sphere 3.75×10−6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid.

initial speed=

b) What is the maximum acceleration of the cells as they move toward each other and just barely touch?

maximum acceleration=

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Solution : To Their potential energy ve a charge on cell to di distance between K2, 92 d them to at large distance reo U=0 anmax acceleration of e force acceleration of tell occurs when the is a maximum, ie when they just touching (d=28) F: kº . dag

Add a comment
Know the answer?
Add Answer to:
1) Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Two red blood cells each have a mass of 2.85×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 2.85×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.20 pC of charge and the other −3.30 pC , and each cell can be modeled as a sphere 7.60 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.50×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 4.50×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.40 pC of charge and the other −3.30 pC , and each cell can be modeled as a sphere 6.20 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 9.05 x 10-14 kg and carry a...

    Two red blood cells each have a mass of 9.05 x 10-14 kg and carry a negative charge spread uniformly over their surfaces The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries -2.10 pC and the other 2.60 pc, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed,...

  • Two red blood cells each have a mass of 5.45×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 5.45×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −1.80 pC of charge and the other −2.90 pC , and each cell can be modeled as a sphere 6.80 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.00×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 4.00×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.40 pC of charge and the other −2.90 pC , and each cell can be modeled as a sphere 6.80 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 6.85×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 6.85×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −1.60 pC of charge and the other −2.70 pC , and each cell can be modeled as a sphere 7.40 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 3.75×10−14 kg3.75×10−14 kg and carry a negative...

    Two red blood cells each have a mass of 3.75×10−14 kg3.75×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.00 pC−2.00 pC of charge and the other −3.10 pC−3.10 pC, and each cell can be modeled as a sphere 8.20 μm8.20 μm in diameter. What minimum relative speed ?v would the red blood cells need when very far away from each...

  • Two red blood cells each have a mass of 5.60×10−14 kg5.60×10−14 kg and carry a negative...

    Two red blood cells each have a mass of 5.60×10−14 kg5.60×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −1.60 pC−1.60 pC of charge and the other −2.90 pC−2.90 pC, and each cell can be modeled as a sphere 6.60 μm6.60 μm in diameter. What minimum relative speed ?v would the red blood cells need when very far away from each...

  • Two red blood cells each have a mass of 5.45×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 5.45×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −1.80 pC of charge and the other −2.90 pC , and each cell can be modeled as a sphere 6.80 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.00×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 4.00×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.40 pC of charge and the other −2.90 pC , and each cell can be modeled as a sphere 6.80 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT