Question

Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are spaced a distance b apart. A viscous liquid is contained between the plates. The bottom plate is fixed, and the upper plate moves parallel to the bottom plate with a velocity U. Assume no-slip boundary conditions. There is no pressure gradient in the direction of flow (a) Demonstrate using the Navier-Stokes equation in the x-direction that the velocity profile is of the form: (15 pts) ? ? (b) Determine an expression for the flow rate per unit width passing between the plates. Express your answer in terms of b and U. (10 pts) Zero velocity components in the y and z directions (-0 and w - 0). Steady laminar flow conditions. The velocity component u varies only in the y direction, u uó). Moving plate Fixed plate Solution
media%2F36b%2F36b939e4-4ef3-40a3-960f-7e
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Boundaaj 2b) 2 Vb

Add a comment
Know the answer?
Add Answer to:
Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates...

    An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates move in the same direction but with different velocities, U1 and U2. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Using the continuity and the Navier-Stokes equations, find an expression for the velocity profile between the plates. Show ALL work for full credit. U1 V=O g u K wo U2

  • An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates...

    An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates move in the same direction but with different velocities, U1 and U2. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Using the continuity and the Navier-Stokes equations, find an expression for the velocity profile between the plates. Show ALL work for full credit. U1 V=O b KO wo U2

  • help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both...

    help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are U6,U respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluiği. Plot both velocity profile and shear distribution. (Show assumptions that you make and...

  • please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below....

    please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are Un,Ut respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluid. Plot both velocity profile and shear distribution. (Show assumptions that you make...

  • An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown below. The two...

    An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown below. The two plates move in opposite directions with constant velocities U 10 m/s and U2 = 5 m/s as shown. The pressure gradient in the x direction is zero and the only external force is gravity (in the y-direction). Use the Navier-Stokes equations to determine where the fluid velocity is zero (in terms of a fraction of b, i.e. 0.75 for y-75% of b) Enter Number...

  • Two horizontal plates with infinite length and width are separated by a distance H in the...

    Two horizontal plates with infinite length and width are separated by a distance H in the zdirection. The bottom plate is moving at a velocity vx=U. The incompressible fluid trapped between the plates is moving in the positive x-direction with the bottom plate. Align gravity with positive z. Assume that the flow is fully-developed and laminar. If the systems operates at steady state and the pressure gradient in x-direction can be ignored, do the following: 1. Sketch your system. 2....

  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • please help ?? a) As shown in the Figure below, a fluid flows down an inclined...

    please help ?? a) As shown in the Figure below, a fluid flows down an inclined surface. Show that the velocity distribution of that fluid is u=[pgsin0/(2)]/(2hy - y²)) by using Navier-Stokes equations. (Show assumptions that you make and every each step) [13 points) b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are U,Ut respectively and they are not equal to...

  • Consider the case of a Newtonian fluid undergoing laminar, pressure-driven flow between two parallel, infinite flat...

    Consider the case of a Newtonian fluid undergoing laminar, pressure-driven flow between two parallel, infinite flat plates separated by a distance B (Figure). The bottom plate is stationary and the top plate moves at a constant velocity Vup. For a constant dynamic pressure gradient, AP/AX, P-p-g r, we wish to calculate the resulting velocity profile. 9--(%) + mai Differentiation equation: B.C.v. (y=0) -0,vxly - B) - Vu Figure 1.10 Pressure-driven flow between two infinite, parallel, flat plates. (i) () Use...

  • Consider steady laminar viscous fluid between two parallel plates with distance h separated from each other....

    Consider steady laminar viscous fluid between two parallel plates with distance h separated from each other. A pressure gradient dp/dx drives the flow. By considering forces acting on a small volume between the parallel plates, obtain the velocity profile, the volumetric flow rate, and the average velocity in terms of centerline velocity Umax Umax

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT