Question

1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velo

0 0
Add a comment Improve this question Transcribed image text
Answer #1
  1. Flow is indiptndtinf u du 2 Umox​​​​​​SF-0 여 or ax ου 밍.ar oy u 02 04 u ta veloth foy 칠 V-О n velo ay
Add a comment
Know the answer?
Add Answer to:
1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below....

    please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are Un,Ut respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluid. Plot both velocity profile and shear distribution. (Show assumptions that you make...

  • An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below....

    An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below. An identical fluid is injected at a constant speed V through the bottom plate and simultaneously extracted from the upper plate at the same velocity. There is no gravity force in x and y directions (g-g,-0). Assume the flow to be steady, fully-developed, 2D, and the pressure gradient in the x direction to be a constant P = constant). (a) Write the continuity equation...

  • help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both...

    help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are U6,U respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluiği. Plot both velocity profile and shear distribution. (Show assumptions that you make and...

  • Consider steady laminar viscous fluid between two parallel plates with distance h separated from each other....

    Consider steady laminar viscous fluid between two parallel plates with distance h separated from each other. A pressure gradient dp/dx drives the flow. By considering forces acting on a small volume between the parallel plates, obtain the velocity profile, the volumetric flow rate, and the average velocity in terms of centerline velocity Umax Umax

  • Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are...

    Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are spaced a distance b apart. A viscous liquid is contained between the plates. The bottom plate is fixed, and the upper plate moves parallel to the bottom plate with a velocity U. Assume no-slip boundary conditions. There is no pressure gradient in the direction of flow (a) Demonstrate using the Navier-Stokes equation in the x-direction that the velocity profile is of the form: (15...

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • 4. Consider fully developed Couette flow-flow between two infinite parallel plates separated by distance h, with...

    4. Consider fully developed Couette flow-flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary. The flow is steady, incompressible, and two-dimensional in the xy- plane. Use the method of repeating variables to generate a dimensionless relationship for the x component of fluid velocity u as a function of fluid viscosity , top plate speed V, distance h, fluid density p, and distance y Show all your work. Hint: u...

  • infinitely long and wide plates plates move in opposite directions with the constant velocities of Ui and U2 to create...

    infinitely long and wide plates plates move in opposite directions with the constant velocities of Ui and U2 to create a laminar flow in the channel. There is no pressure gradient in the flow direction. Start with the N-S equations to derive an equation for the velocity profile in the channel. Calculate the average velocity in the channel, the volumetric flow rate per unit depth and the mass flow rate per unit depth for p-55 lbm/ft', /i=0.8 lbm/(ft.s) a=0.25 in.,...

  • An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates...

    An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates move in the same direction but with different velocities, U1 and U2. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Using the continuity and the Navier-Stokes equations, find an expression for the velocity profile between the plates. Show ALL work for full credit. U1 V=O b KO wo U2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT