Question

Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. Th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

By considering the relative velocity of top plate wirt bottom plate we can get the velocity of top plate as av I thus, 2v 34

Add a comment
Know the answer?
Add Answer to:
Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • Considera steady, incompressible laminar flow of a Newtonian fluid in a pipe ignoring the effects of...

    Considera steady, incompressible laminar flow of a Newtonian fluid in a pipe ignoring the effects of gravity. When a constant pressure gradient is applied in the x-direction, demonstrate that the maximum velocity of the fluid is given by 2 times of its average velocity.

  • The laminar flow of a permanent incompressible Newtonian fluid in a long cylindrical pipe with a...

    The laminar flow of a permanent incompressible Newtonian fluid in a long cylindrical pipe with a diameter D in vertical position is considered. Gravitational effects are taken into account, flow is carried out with a constant pressure gradient and gravity effect in the z- direction. a. Express the problem on the figure, write the given and accepted. b. Find the velocity profile in the fluid. c. Develop the relations that express the volumetric flow and shear stress in the pipe...

  • Consider the case of a Newtonian fluid undergoing laminar, pressure-driven flow between two parallel, infinite flat...

    Consider the case of a Newtonian fluid undergoing laminar, pressure-driven flow between two parallel, infinite flat plates separated by a distance B (Figure). The bottom plate is stationary and the top plate moves at a constant velocity Vup. For a constant dynamic pressure gradient, AP/AX, P-p-g r, we wish to calculate the resulting velocity profile. 9--(%) + mai Differentiation equation: B.C.v. (y=0) -0,vxly - B) - Vu Figure 1.10 Pressure-driven flow between two infinite, parallel, flat plates. (i) () Use...

  • : figure below. The plates are fixed and separated by some distance L. Assume incompressible, New...

    : figure below. The plates are fixed and separated by some distance L. Assume incompressible, Newtonian, steady, iD unidirectional fully developed laminar flow. Friction causes pressure loss in the direction of flow. Gravity acts in the negative y-direction 1. (21 points) Fluid fows in the positive -direction between two infinite vertical plates as shown in dhe v(x) a) Reduce the Navier-Stokes equation for this case. Justify all assumptions. auu uau du ou of dx dy dz Oz : figure below....

  • Fluid is Non-Newtonian. (3) Consider the steady laminar flow between the coaxial cylinders shown below. The...

    Fluid is Non-Newtonian. (3) Consider the steady laminar flow between the coaxial cylinders shown below. The inner cylinder rotates with angular velocity 2 and the outer cylinder is stationary. The no-slip condition applies at the inner and outer cylinder surfaces and we are considering the cylinders to be very long in the 2-direction hence we may ignore edge effects near the top and bottom surfaces. - R2 Assume that gravity is negligible, v, is zero and that are zero for...

  • fluid mechanics A steady, incompressible, and laminar flow of a fluid of viscosity u flows through...

    fluid mechanics A steady, incompressible, and laminar flow of a fluid of viscosity u flows through an inclined narrow gap of a crack in the wall of length L and a constant width W shown in Figure Q1(b). Assume that the gap has a constant thickness of 7. The fluid flows down the inclined gap at an angle and in the positive x-direction. No pressure gradient is applied throughout the flow but there is gravitational effect. Derive an expression for...

  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • 12. Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an...

    12. Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an infinite vertical wall as shown in the figure(Fig. P12a). The oil film thickness is h, and gravity acts in the negative z-direction (downward in the figure) There is no applied (forced) pressure driving the flow the oil falls by gravity alone. (1) Calculate the velocity field in the oi film and sketch the normalized velocity profile. And generate an expression for the volumetric flow...

  • 10. Immiscible fluids Two immiscible incompressible Newtonian fluids flow together through in thedirection two lates separated...

    10. Immiscible fluids Two immiscible incompressible Newtonian fluids flow together through in thedirection two lates separated by a distance H in the y-direction. Let us make thé top plate /move with ection while fixing the bottom plate. At steady state, however, there be a little slip velocity of the more dense fluid only at the lower boundary The flow constant vetocity V in the x-dir is ynidirectional and faminar. For convenience, we take that x is the flow direction and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT