Question

10. Immiscible fluids Two immiscible incompressible Newtonian fluids flow together through in thedirection two lates separated by a distance H in the y-direction. Let us make thé top plate /move with ection while fixing the bottom plate. At steady state, however, there be a little slip velocity of the more dense fluid only at the lower boundary The flow constant vetocity V in the x-dir is ynidirectional and faminar. For convenience, we take that x is the flow direction and y the velocity gradient direction. There is no pressure difference between the inlet and outlet, and the gap thickness (H) between the plates is so small that gravitational force can be neglected. (a) Sketch the steady-state velocity profile qualitatively in case that the less dense fluid has a lower viscosity. What about the opposite case? (b) When the less dense fluid has a viscosity twice as large as that of the more dense fluid, Sketch the steady-state velocity profile qualitatively and compare between the two fluids for the magnitude of heat generated by viscous dissipation.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution (n iven is a slip at 4he botlomlate. n less density 4-loid in less than high cienssiHy dsluid at the intexlace. 7 aN

Add a comment
Know the answer?
Add Answer to:
10. Immiscible fluids Two immiscible incompressible Newtonian fluids flow together through in thedirection two lates separated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two immiscible Newtonian fluids are contained between infinite parallel plates. The plates are separated by distance...

    Two immiscible Newtonian fluids are contained between infinite parallel plates. The plates are separated by distance 4h, and the top fluid layer thickness is h. The bottom layer has thickness 3h. The viscosity of the bottom fluid is three times that of the top fluid. If the lower plate moves at a constant speed of 20 m/s and the upper plate moves at a constant speed of 40 m/s, what is the average velocity within the bottom liquid layer? We...

  • Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity ...

    Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity distribution between the plate is given by 1 dP 2μ dr where y is the direction from one plate (y-0) to another (y-w),and x is the direction of flow a) What is the expression for the rate of deformation matrix? b) What is the expression for the stress matrix? c) At the center of the flow y w/2, what is the direction of internal forcing due...

  • An incompressible Newtonian fluid flow through a horizontal circular tube is shown in the following figure....

    An incompressible Newtonian fluid flow through a horizontal circular tube is shown in the following figure. We assume that the flow is steady, and its direction is parallel to the wall. By using the Navier-Stokes equations. determine the velocity profile and calculate the mean velocity and maximum velocity; Please give the details about how to simplify the N-S equation, how to integrate the simplified N-S equations with the proper boundary conditions, and the relationship between the mean velocity and maximum...

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • Meng334(fluids mechanics) plz solve it fast in 10 mins please Q2: A steady two-dimensional, incompressible flow of a...

    Meng334(fluids mechanics) plz solve it fast in 10 mins please Q2: A steady two-dimensional, incompressible flow of a Newtonian fluid with the velocity field: v = y2-x2 u-2 x y and w 0 (a) Does the flow satisfy conservation of mass. (b) Find the total pressure gradient VP) (c) Show that the pressure field is a smooth function of x and y. Don't compute the pressure. (9x 9y 0) = Q2: A steady two-dimensional, incompressible flow of a Newtonian fluid...

  • A Newtonian body wash undergoes steady shear between two horizontal parallel plates. The lower plate is...

    A Newtonian body wash undergoes steady shear between two horizontal parallel plates. The lower plate is fixed, and the upper plate of 1kg moves with constant velocity of 20 m/s. The distance between the plates is constant at 5 mm. The area of the upper plate in contact with the fluid is 0.5 m2 . a) What is the viscosity of the product and b) the momentum diffusivity if its density is 1010 kg/m3?

  • Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a...

    Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a distance 2h away from each other. The flow is fully developed (i.e. steady) and the entirety of the velocity is the in vertical direction and due to gravity. Assuming there is no pressure gradient, solve for this velocity, w, as a function of 2. (3 points) Figure 1: Flow between two vertical parallel plates due to gravity.

  • 2.22. Three parallel flat plates are separated by two fluids. Plate 1 (on the bottom) is...

    2.22. Three parallel flat plates are separated by two fluids. Plate 1 (on the bottom) is at rest. Water, viscosity 0.8007 CP at 30°C, lies between plates 1 and 2. Toluene, viscosity 0.5179 cP at 30°C, lies between plates 2 and 3. The distance between each pair of plates is 10 cm. Plate 3 moves at 3 ms. Find: (a) the velocity of plate 2 at steady-state (b) the force per unit area on plate 3 required to maintain the...

  • 1. Steady state heat transfer in a planar system (35 pt) Two large flat porous horizontal...

    1. Steady state heat transfer in a planar system (35 pt) Two large flat porous horizontal plates are separated by a relatively small distance L. The upper plate at y L is at temperature TL, and the lower one at y 0 is to be maintained at a lower temperature To. To reduce the amount of heat that must be removed from the lower plate, a Newtonian fluid at To is driven upward through both plates at a steady rate,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT