Question

A Newtonian body wash undergoes steady shear between two horizontal parallel plates. The lower plate is...

A Newtonian body wash undergoes steady shear between two horizontal parallel plates.
The lower plate is fixed, and the upper plate of 1kg moves with constant velocity of 20 m/s.
The distance between the plates is constant at 5 mm. The area of the upper plate in contact
with the fluid is 0.5 m2
. a) What is the viscosity of the product and b) the momentum
diffusivity if its density is 1010 kg/m3?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Add a comment
Know the answer?
Add Answer to:
A Newtonian body wash undergoes steady shear between two horizontal parallel plates. The lower plate is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two immiscible Newtonian fluids are contained between infinite parallel plates. The plates are separated by distance...

    Two immiscible Newtonian fluids are contained between infinite parallel plates. The plates are separated by distance 4h, and the top fluid layer thickness is h. The bottom layer has thickness 3h. The viscosity of the bottom fluid is three times that of the top fluid. If the lower plate moves at a constant speed of 20 m/s and the upper plate moves at a constant speed of 40 m/s, what is the average velocity within the bottom liquid layer? We...

  • 3. Two parallel plates are 0.025 m apart (h): the lower plate is stationary and the upper plate m...

    Can you make matlab solve it? 3. Two parallel plates are 0.025 m apart (h): the lower plate is stationary and the upper plate moves at a velocity (V ) of 2 ms. The shear stress (t) is estimated by where u, the viscosity in Ns/m2, is a fiunction that depends on the temperature. Laboratory measurements give: тес! 5 | 20 | 30 | 50 | 55 0.08 0.015 0.009 0.006 0.0055 Estimate the shear stress at 38°C 3. Two...

  • , (20 pts) The Newtonian fluid is confined between an upper plate and a bottom f...

    , (20 pts) The Newtonian fluid is confined between an upper plate and a bottom f If its velocity profile is defined by u s(9y-0.1y3) rn m/s , where y is in mm, (a) determine the shear stress that the fluid exerts on the upper plate and bottom fixed surface and (b) indicate the direction of each shear stress. Take the fluid viscosity A0.482 N s/m2.

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity ...

    Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity distribution between the plate is given by 1 dP 2μ dr where y is the direction from one plate (y-0) to another (y-w),and x is the direction of flow a) What is the expression for the rate of deformation matrix? b) What is the expression for the stress matrix? c) At the center of the flow y w/2, what is the direction of internal forcing due...

  • A fluid having a viscosity u 9.35 x 104 lbf-s/ft is contained between two parallel plates,...

    A fluid having a viscosity u 9.35 x 104 lbf-s/ft is contained between two parallel plates, each of which has a cross section of 200 in2. The bottom plate is fixed whereas the top plate moves at a constant velocity of 4 ft/s when a shearing force is applied. The separation distance between the plates is a uniform 0.05 in. Assume the velocity distribution in the fluid is linear. Determine the following: 4. the shear stress in the fluid (lbf/in2)...

  • 1. Steady state heat transfer in a planar system (35 pt) Two large flat porous horizontal...

    1. Steady state heat transfer in a planar system (35 pt) Two large flat porous horizontal plates are separated by a relatively small distance L. The upper plate at y L is at temperature TL, and the lower one at y 0 is to be maintained at a lower temperature To. To reduce the amount of heat that must be removed from the lower plate, a Newtonian fluid at To is driven upward through both plates at a steady rate,...

  • Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a...

    Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a distance 2h away from each other. The flow is fully developed (i.e. steady) and the entirety of the velocity is the in vertical direction and due to gravity. Assuming there is no pressure gradient, solve for this velocity, w, as a function of 2. (3 points) Figure 1: Flow between two vertical parallel plates due to gravity.

  • 2.22. Three parallel flat plates are separated by two fluids. Plate 1 (on the bottom) is...

    2.22. Three parallel flat plates are separated by two fluids. Plate 1 (on the bottom) is at rest. Water, viscosity 0.8007 CP at 30°C, lies between plates 1 and 2. Toluene, viscosity 0.5179 cP at 30°C, lies between plates 2 and 3. The distance between each pair of plates is 10 cm. Plate 3 moves at 3 ms. Find: (a) the velocity of plate 2 at steady-state (b) the force per unit area on plate 3 required to maintain the...

  • Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are...

    Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are spaced a distance b apart. A viscous liquid is contained between the plates. The bottom plate is fixed, and the upper plate moves parallel to the bottom plate with a velocity U. Assume no-slip boundary conditions. There is no pressure gradient in the direction of flow (a) Demonstrate using the Navier-Stokes equation in the x-direction that the velocity profile is of the form: (15...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT