Question

Considera steady, incompressible laminar flow of a Newtonian fluid in a pipe ignoring the effects of gravity. When a constant

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution Assumption o- laminar o steady, Newtonian, Incompress flow and constant pressure gradient in a direction Sot consie n e zu lerat. uz am CS 102tc fii . A qulax) Boundary. condition at r=R u= 0 oo c= -1 lap 102 4- sout ) (R2-42] —Q03 Now Umaon Integrating 9 Four le * - o Varg zu = 0 vis ARE viny Vag = you ( 26 ) R² co from eigh (ving & Co Ymox - Feel op ) R2 max V

Add a comment
Know the answer?
Add Answer to:
Considera steady, incompressible laminar flow of a Newtonian fluid in a pipe ignoring the effects of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The laminar flow of a permanent incompressible Newtonian fluid in a long cylindrical pipe with a...

    The laminar flow of a permanent incompressible Newtonian fluid in a long cylindrical pipe with a diameter D in vertical position is considered. Gravitational effects are taken into account, flow is carried out with a constant pressure gradient and gravity effect in the z- direction. a. Express the problem on the figure, write the given and accepted. b. Find the velocity profile in the fluid. c. Develop the relations that express the volumetric flow and shear stress in the pipe...

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • fluid mechanics A steady, incompressible, and laminar flow of a fluid of viscosity u flows through...

    fluid mechanics A steady, incompressible, and laminar flow of a fluid of viscosity u flows through an inclined narrow gap of a crack in the wall of length L and a constant width W shown in Figure Q1(b). Assume that the gap has a constant thickness of 7. The fluid flows down the inclined gap at an angle and in the positive x-direction. No pressure gradient is applied throughout the flow but there is gravitational effect. Derive an expression for...

  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a...

    Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a distance 2h away from each other. The flow is fully developed (i.e. steady) and the entirety of the velocity is the in vertical direction and due to gravity. Assuming there is no pressure gradient, solve for this velocity, w, as a function of 2. (3 points) Figure 1: Flow between two vertical parallel plates due to gravity.

  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • An incompressible Newtonian fluid flow through a horizontal circular tube is shown in the following figure....

    An incompressible Newtonian fluid flow through a horizontal circular tube is shown in the following figure. We assume that the flow is steady, and its direction is parallel to the wall. By using the Navier-Stokes equations. determine the velocity profile and calculate the mean velocity and maximum velocity; Please give the details about how to simplify the N-S equation, how to integrate the simplified N-S equations with the proper boundary conditions, and the relationship between the mean velocity and maximum...

  • Fluid is Non-Newtonian. (3) Consider the steady laminar flow between the coaxial cylinders shown below. The...

    Fluid is Non-Newtonian. (3) Consider the steady laminar flow between the coaxial cylinders shown below. The inner cylinder rotates with angular velocity 2 and the outer cylinder is stationary. The no-slip condition applies at the inner and outer cylinder surfaces and we are considering the cylinders to be very long in the 2-direction hence we may ignore edge effects near the top and bottom surfaces. - R2 Assume that gravity is negligible, v, is zero and that are zero for...

  • 12. Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an...

    12. Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an infinite vertical wall as shown in the figure(Fig. P12a). The oil film thickness is h, and gravity acts in the negative z-direction (downward in the figure) There is no applied (forced) pressure driving the flow the oil falls by gravity alone. (1) Calculate the velocity field in the oi film and sketch the normalized velocity profile. And generate an expression for the volumetric flow...

  • Problem 5. Consider a (i) steady, (ii) incompressible, axisymmetric, (iv) fully- developed, (v) constant viscosity, (vi) laminar flow in a circular pipe. Assume that the pipe is horizontal, so that a...

    Problem 5. Consider a (i) steady, (ii) incompressible, axisymmetric, (iv) fully- developed, (v) constant viscosity, (vi) laminar flow in a circular pipe. Assume that the pipe is horizontal, so that any gravitational effects can be ignored It is known that an incompressible, constant viscosity fluid can be described by the continuity equation in cylindrical coordinates together with the Naiver-Stokes equations (ak.a., momentum eqns) in cylindrical coor- dinates Ov 00. Or 9-moment um 11ap 2-momentum plus the appropriate boundary conditions. Starting...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT