Question

An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below. An identical fluid is in
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that,

An incompressible flow between two porous, parallel flat plates.

An identical fluid is injected at a constant speed V

Assumptions:- 4 4 4 4 4 4 4 porousplate Ich Flowdirection - V 44 44 porous plote 17 Assumptions a 1. Steady How 3. Incorposesb) considering the momentum p (line the great values were prese nt a les By solving the equation , u = Gely ( 2 ) vytla du =(Solving the above two equations, la - in een Substituting the above constant at equation 1.

Add a comment
Know the answer?
Add Answer to:
An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates...

    An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates move in the same direction but with different velocities, U1 and U2. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Using the continuity and the Navier-Stokes equations, find an expression for the velocity profile between the plates. Show ALL work for full credit. U1 V=O g u K wo U2

  • An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates...

    An incompressible viscous fluid is placed between horizontal, infinite parallel plates as shown. The two plates move in the same direction but with different velocities, U1 and U2. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Using the continuity and the Navier-Stokes equations, find an expression for the velocity profile between the plates. Show ALL work for full credit. U1 V=O b KO wo U2

  • An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown below. The two...

    An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown below. The two plates move in opposite directions with constant velocities U 10 m/s and U2 = 5 m/s as shown. The pressure gradient in the x direction is zero and the only external force is gravity (in the y-direction). Use the Navier-Stokes equations to determine where the fluid velocity is zero (in terms of a fraction of b, i.e. 0.75 for y-75% of b) Enter Number...

  • Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are...

    Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are spaced a distance b apart. A viscous liquid is contained between the plates. The bottom plate is fixed, and the upper plate moves parallel to the bottom plate with a velocity U. Assume no-slip boundary conditions. There is no pressure gradient in the direction of flow (a) Demonstrate using the Navier-Stokes equation in the x-direction that the velocity profile is of the form: (15...

  • 4. An incompressible fluid with viscosity u and density p was contained in pipe of length...

    4. An incompressible fluid with viscosity u and density p was contained in pipe of length L and radius R. Initially the fluid is in rest. At t=0, a pressure difference of AP is applied across the pipe length which induces the fluid flow in axial direction (V2) Only varies with time (t) and pipe radius (r). There is no effect of gravity. To describe the fluid flow characteristics, after the pressure gradient is applied, answer the following questions: a)...

  • Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a...

    Problem 2. An incompressible, Newtonian fluid flows downwards between two vertical parallel plates that are a distance 2h away from each other. The flow is fully developed (i.e. steady) and the entirety of the velocity is the in vertical direction and due to gravity. Assuming there is no pressure gradient, solve for this velocity, w, as a function of 2. (3 points) Figure 1: Flow between two vertical parallel plates due to gravity.

  • In addition, derive the "wave equation" for an incompressible fluid. Use the continuity equation and the...

    In addition, derive the "wave equation" for an incompressible fluid. Use the continuity equation and the linearized euler equation. Linearized Euler: A flow is incompressible if a fluid element does not change its density as the element moves. From Problem 54.1, this means (7p/dt) u . ρ-0. (a) Show that for an incompressible fluid the equation of continuity reduces to V -u -0. (b) Write Euler's equation for the flow of an incompressible fluid. (c) What is c for an...

  • Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity ...

    Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity distribution between the plate is given by 1 dP 2μ dr where y is the direction from one plate (y-0) to another (y-w),and x is the direction of flow a) What is the expression for the rate of deformation matrix? b) What is the expression for the stress matrix? c) At the center of the flow y w/2, what is the direction of internal forcing due...

  • 3.0, Radial Flow between Concentric Spheres Consider an isothermal, incompressible fluid flowing radially between t...

    3.0, Radial Flow between Concentric Spheres Consider an isothermal, incompressible fluid flowing radially between two concentric porous spherical shells. (See Fig. 3.0.) Assume stecady laminar flow withu- ul) Direction of flow flow between concentric porous spheres. Fig. 10. Radial Note that here the velocity is not assumed zero at the solid surfaces. Show by use of the cquation of continuity that a. (3.0- where y is a constant. b. Show by use of the equations of motion that the pressure...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT