Question

#1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “F

0 0
Add a comment Improve this question Transcribed image text
Answer #1

oll GORN at 10KN/m mmm B C 21 A T I I 3m Im 1.5m Am method, Hence taking we will apply castiglianos RB lie reaction at B dowLimit of x 0 to 1.5m For section ♡ ♡ AB x from A M = 0 (1) aM =0 a RB section ® 2, limit of a o to im For BC, from B M= - RBoRB, a + RB. (x+1) 3 + 50 + / RB (x+2) 3 BEI BEI EI O ЗЕТ 0 ס + 950.625 35x10-3 EI 8 RB 6 EI + 950.625 I Ro + 125 RB 6EI 8 RBx from a SF00 x from B SF@@ - - 18.017 KN Hence, SFA=0 - 18.017 KN SFB left SF Bright SF e left = =-18.017 KN x from a - 18.0for Bending moment diagram- Taking sections from figure (1 M00 x from B - 18.017 a at x=0, MB=0 at x = im Mc = -18.017 KNm M@

Add a comment
Know the answer?
Add Answer to:
#1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using "Force Method". The (roller) support at "B" settles 35 mm. The moment of inertia is given by (1) for regions "AB", "BC" and "CD": however it is equal to (21) for the region "DE". ("B" is the roller and "E" is the fixed type of support). [The flexural rigidity: EI-40000 kNm] 60 KN 10 kN/m B L (21) 1.5 X...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using "Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (I) for regions "AB", "BC" and "CD"; however it is equal to (21) for the region “DE”. (“B” is the roller and “E” is the fixed type of support). [The flexural rigidity: EI=40000 kNm] 60 KN 10 kN/m B (21) 1.5 m 1...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (I) for regions “AB”, “BC” and “CD”; however it is equal to (21) for the region “DE”. (“B” is the roller and “E” is the fixed type of support). [The flexural rigidity: EI=40000 kNm’] 60 KN 10 kN/m A B X (I) (I)...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (I) for regions “AB”, “BC” and “CD”; however it is equal to (21) for the region “DE”. (“B” is the roller and “E” is the fixed type of support). [The flexural rigidity: EI=40000 kNm’] 60 KN 10 kN/m A B X (I) (I)...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method”. The (roller) support at “B” settles 35 mm. The moment of inertia is given by (1) for regions “AB”, “BC” and “CD”; however it is equal to (21) for the region “DE”. (“B” is the roller and “E” is the fixed type of support). [The flexural rigidity: EI=40000 kNm?] 60 kN 10 kN/m 1 A B X (1)...

  • #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam...

    #1) (65p.) Draw the Shear Force (V) and Bending Moment (M) diagrams of statically indeterminate beam shown in figure using “Force Method". The (roller) support at "B" settles 35 mm. The moment of inertia is given by (1) for regions "AB", "BC" and "CD"; however it is equal to (21) for the region "DE". ("B" is the roller and "E" is the fixed type of support). [The flexural rigidity: El-40000 kNm"] 60 KN 10 kN/m B (1) (1) D (21)...

  • Draw the Shear Force (V) and Bending Moment (MI) diagrams of statically indeterminate beam shown in...

    Draw the Shear Force (V) and Bending Moment (MI) diagrams of statically indeterminate beam shown in figure using “Force Method”. The (roller) support at "B" settles 35 mm. The moment of inertia is given by (1) for regions "AB", "BC" and "CD"; however it is equal to (21) for the region “DE”. ("B" is the roller and “E" is the fixed type of support). [The flexural rigidity: EI=40000 kNm] 60 KN y 10 kN/m A - Tu (21) 1.5m 11...

  • Problem 1: (30 points) Draw the shear force (V) and bending moment (M) diagrams for the...

    Problem 1: (30 points) Draw the shear force (V) and bending moment (M) diagrams for the beam AF given below. (B is a pin support, E is a roller support) Find the support reactions first. You are required to show the magnitude and location of all significant points. You don't have to find the equations defining the shear and moment diagrams unless necessary. However, indicate the order of all curves (e.g. 1" degree, 2nd degree, 3od degree). Ignore the depth...

  • Use the graphical method to construct the shear-force and bending-moment diagrams for the beam shown. Label...

    Use the graphical method to construct the shear-force and bending-moment diagrams for the beam shown. Label all significant points on each diagram and identify the maximum moments along with their respective locations. Additionally: (a) Determine V and M in the beam at a point located 1.50 m to the right of B. (b) Determine Vand M in the beam at a point located 1.25 m to the left of D. Leta - 3.0m, b = 6.1 m,w = 38 kN/m,...

  • 4. For the beam and loading shown, draw the shear force and bending moment diagrams and...

    4. For the beam and loading shown, draw the shear force and bending moment diagrams and determine the maximum bending and shear force and their locations. 20 KN 40 KN B D 250 mm |--2.5 m- 3m-4-2 m 80 mm 5. For the beam and loading shown, draw the shear force and bending moment diagrams and determine the maximum bending and shear force and their locations. 50 KN

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT