Question

Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is applied to the right shaft b

01 3) Find the poles and zeros of the transfer function and place poles in root locus graph. Comment on the stability of your

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Page Date I d² 1 +b, do k (0-2)=0 dt² at T = I2 d²02 + b2 d 2 4 K CO2-6) dt² dt Laploce transfom of equation () ( ² It sb, tkPut I = I 2 = 1, b = b 2 =0.9 ,K=4 Bi(5) T(5) 4 S[ 53+1.85?+ 8.81 5 + 1-2 O2 (s) TCS) s²+0.95 +4 8 53 +1.833+ 8.815+7.2] 0.31 Re -2 2

Add a comment
Know the answer?
Add Answer to:
Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is...

    Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is applied to the right shaft but the angular position of the left shaft is to be controlled, k is the stiffness of the linear rotary spring and bi, b2 are the viscous friction coefficients of the ball bearings that support the left and right shafts respectively and act as linear viscous dampers with rotary motion. PLEASE show all mathematical steps explicitly. (I1=Iz=1kgm², bi=b2=0.9Nms/rad, k=4Nm/rad)...

  • Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is...

    Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is applied to the right shaft but the angular position of the left shaft is to be controlled, k is the stiffness of the linear rotary spring and b is the viscous friction coefficient of the ball bearing that supports the right shaft and acts as a linear viscous damper with rotary motion. The left shaft is only supported by the right shaft, so there...

  • Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is...

    Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is applied to the right shaft but the angular position of the left shaft is to be controlled, k is the stiffness of the linear rotary spring and b is the viscous friction coefficient of the ball bearing that supports the right shaft and acts as a linear viscous damper with rotary motion. The left shaft is only supported by the right shaft, so there...

  • Question 3) Consider the mechanical system shown in figure, T(t) is the torque applied to shaft...

    Question 3) Consider the mechanical system shown in figure, T(t) is the torque applied to shaft 1 and z(t) is the rotation of shaft 2. J.Jz and Jz are the inertias of shafts 1,2 and 3 respectively, N,,N,N, and N, are the number of teeths of the gears,, D1, D, and D3 are the coefficient of viscous damping associated with shafts 1, 2 and 3 respectively, K is the spring constant of the torsional spring attached to shaft 3. Write...

  • 3) For the system shown in the figure, the input is the torque T(t) and the...

    3) For the system shown in the figure, the input is the torque T(t) and the outputs are the linear displacements x(t) and the angular displacement θ(t). The equilibrium position corresponds to x 0 0. Note that there is viscous friction between the rack and the surface it slides on. Also, you may treat the small diameter shaft as massless and rigid. mr Clearly state all assumptions to be used for modeling this system. Draw the freebody diagrams. State your...

  • 4. Consider the rotational system shown below. For steel, G- 8.27 x 101° Nt/m2 and p 7800 kg/m', ...

    4. Consider the rotational system shown below. For steel, G- 8.27 x 101° Nt/m2 and p 7800 kg/m', and for the fluid, μ = 0.309 Nt-sec/m2. Given dı = 0.01m, d,-0.40m, Li-0.50m, L2 = 0.30m and h-0.2mm. a). find the torsional stiffiness K, of the shaft; b). find the moment of inertia J of the steel rotor; c). find the torsional damping constant B, ignoring the viscous effects of the oil on the left and right ends of the rotor....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT