Question

In the diagram two capacitors, C1 = 3.0 μF, and C2 = 6.0 μF are connected in series to a battery and are fully charged. If the electric energy stored in C1 is U1, then the energy stored in C2 equals to which of the following:

Ah C1 C2 E

a. 4U1

b. 0.5U1

c. U1

d. 2U1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

С- С. 1 iu Since 9 and ca are senies so their equivalent capacitance » от - Ceat _) + 1 СІ С2 1 = | + cea 4 6 3 cea 6X3 (6+ 3et999 С, in 82 2C, , 2 X 2С, UL v, Q 2_c, 8. Uz С. C2 3 , - Xu 9. – б. Sо, CS Scanned with CamScanner

Add a comment
Know the answer?
Add Answer to:
In the diagram two capacitors, C1 = 3.0 μF, and C2 = 6.0 μF are connected...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and...

    Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and a 21.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance     μF total energy stored     J (b) Find the energy stored in each individual capacitor. energy stored in C1     J energy stored in C2     J Show that the sum of these two energies is the same as the energy found in part (a)....

  • Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and...

    Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and a 9.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance ______ μF total energy stored _______ J (b) Find the energy stored in each individual capacitor. energy stored in C1 ______ J energy stored in C2 ______ J Show that the sum of these two energies is the same as the energy...

  • Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and...

    Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and a 24.0-V battery is connected across them (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance total energy stored (b) Find the energy stored in each individual capacitor. energy stored in C energy stored in C2 Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always...

  • Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a...

    Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a 6.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance 13.93 total energy stored 25e-5 (b) Find the energy stored in each individual capacitor. energy stored in C1 energy stored in C2 1.340-4X 83.58 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each ste care...

  • Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them.

    Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor(b) Find the energy stored in each individual capacitor(c) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? Which capacitor stores more energy in this situation, C1 or C2?  

  • Two capacitors,C1 = 19.0 μF andC2 = 45.0 μF, are connected in series,and...

    Two capacitors,C1 = 19.0 μF andC2 = 45.0 μF, are connected in series, and a 21.0-V battery is connected across them.(a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor.equivalent capacitance    13.3 μFtotal energy stored    2.93e-3  J(b) Find the energy stored in each individual capacitor.(c) Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always be true, or does it depend on the number of capacitors and their...

  • Two capacitors (C1 = 3.0 μF, C2 = 14.0μF) are charged individually to (V1 = 17.7...

    Two capacitors (C1 = 3.0 μF, C2 = 14.0μF) are charged individually to (V1 = 17.7 V, V2 = 4.0 V). The two capacitors are then connected together in parallel with the positive plates together and the negative plates together. A) Calculate the final potential difference across the plates of the capacitors once they are connected. B) Calculate the amount of charge (absolute value) that flows from one capacitor to the other when the capacitors are connected together. C) By...

  • Two capacitors, C1 = 4.92 μF and C2 = 14.1 μF, are connected in parallel, and...

    Two capacitors, C1 = 4.92 μF and C2 = 14.1 μF, are connected in parallel, and the resulting combination is connected to a 9.00-V battery. (a) Find the equivalent capacitance of the combination. (b) Find the potential difference across each capacitor. (c) Find the charge stored on each capacitor. *PLEASE ANSWER ALL PARTS TO A, B, AND C CLEARLY* THANK YOU FOR YOUR HELP IN ADVANCE! Safari File Edit View History Bookmarks Window Help 璽台 교 8令49%DE Tue 4:41:04 PM...

  • Two capacitors, C1 = 4.41 μF and C2 = 13.9 μF, are connected in parallel, and...

    Two capacitors, C1 = 4.41 μF and C2 = 13.9 μF, are connected in parallel, and the resulting combination is connected to a 9.00-V battery. (a) Find the equivalent capacitance of the combination. μF (b) Find the potential difference across each capacitor. V1 =  V V2 =  V (c) Find the charge stored on each capacitor. Q1 =  μC Q2 =  μC

  • Two capacitors, C1 = 4.35 μF and C2 = 12.5 μF, are connected in parallel, and...

    Two capacitors, C1 = 4.35 μF and C2 = 12.5 μF, are connected in parallel, and the resulting combination is connected to a 9.00-V battery. (a) Find the equivalent capacitance of the combination. μF (b) Find the potential difference across each capacitor. V1 =  V V2 =  V (c) Find the charge stored on each capacitor. Q1 =  μC Q2 =  μC

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT