Question

R C L Doo HH HI Consider the RLC circuit shown. The power source provides a rms voltage of 210 V at a frequency of 75 Hz. The

0 0
Add a comment Improve this question Transcribed image text
Answer #1

R с 2 U-2100 f = 75 Hz R=25? L 30.0m Coq MA 95855 95155 - 34.83 uf Ceq a x₂ = wh = 275L 13 =9nx 7530 x 10 - 14.14 R Xe ㅗ 457

Add a comment
Know the answer?
Add Answer to:
R C L Doo HH HI Consider the RLC circuit shown. The power source provides a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • R сс, L Woo 11 H11 Consider the RLC circuit shown. The power source provides a...

    R сс, L Woo 11 H11 Consider the RLC circuit shown. The power source provides a rms voltage of 210 V at a frequency of 75 Hz. The circuit values are as follows: R= 25 S2, L = 30.0 mH, C1 = 95.0 uF, and C2 = 55.0 uF. a) (2 pts.) Determine the inductive reactance of this circuit. b) (2 pts.) Determine the capacitive reactance of this circuit. c) (2 pts.) Determine the total impedance of this circuit. d)...

  • Consider an RLC circuit where a resistor (R = 35.0 Ω), capacitor (C = 15.5 μF),...

    Consider an RLC circuit where a resistor (R = 35.0 Ω), capacitor (C = 15.5 μF), and inductor (L = 0.0940 H) are connected in series with an AC source that has a frequency of 80.0 Hz. a. Determine the capacitive reactance at this frequency. b. Determine the inductive reactance at this frequency. c. Determine the total impedance. d. Determine the phase angle. e. Determine the circuit’s resonant frequency.

  • A series RLC circuit has R=4250, L=1.25H and C=3.50uF. It is connected to an AC source...

    A series RLC circuit has R=4250, L=1.25H and C=3.50uF. It is connected to an AC source with f=60.0 Hz and Vmax=150V. a. Determine the inductive reactance, the capacitive reactance and the impedance of the circuit. b. Find the Maximum current in the circuit. C. Find the phase angle between the current and voltage.

  • A RLC circuit is driven by an AC source of 120volts with frequency 60H_z. The resistance...

    A RLC circuit is driven by an AC source of 120volts with frequency 60H_z. The resistance is 2000 Ohm, the capacitance is 500 mu F, and the inductance is 100_m M. Find the inductive reactance, The capacitive reactance, the impedance, the current, and the resonant frequency.

  • Consider an RLC series circuit with R = 600 Ω, L = 3 H, C =...

    Consider an RLC series circuit with R = 600 Ω, L = 3 H, C = 4μF, generator voltage V = 20 v, frequency= 60 hz. Find a) the inductive impedance XL, b) capacitive impedance Xc , c) Total impedance Z, d) Line current I , e) Voltage drops VR , VL, ,Vc f) combination voltage VRL , and VLc , g) phase angle φ , h) resonant frequency f0 , i) Power dissipated by circuit.

  • QUESTION 29 An RLC circuit consists of an alternating voltage source with RMS voltage 130 V...

    QUESTION 29 An RLC circuit consists of an alternating voltage source with RMS voltage 130 V and frequency 65 Hz, a 90 Ohm resistor, a 130 mH inductor, and a 200 micro-F capacitor, all wired in series. a) What is the inductive reactance of the circuit? b) What is the capacitive reactance of the circuit? c) What is the impedance of the circuit? d) What is the RMS current in the circuit? e) If the frequency is adjustable, what frequency...

  • electromagnetic 19) RLC Circuit Resonance Frequency: (12 pts) (a) Identify the relation between the capacitive reactance...

    electromagnetic 19) RLC Circuit Resonance Frequency: (12 pts) (a) Identify the relation between the capacitive reactance (Xc) and inductive reactance (XL) that will minimize the total impedance (Z) of an RLC circuit. (b) Using this condition, derive the resonance frequency () of an RLC circuit. (c) Calculate the resonance frequency for an RLC circuit with: R=102 L=4H C=IF

  • 4. A series RLC circuit has R=42512, L=1.25H and C=3.50 F. It is connected to an...

    4. A series RLC circuit has R=42512, L=1.25H and C=3.50 F. It is connected to an AC source with f=60.0Hz and AVmax=150V. a. Determine the inductive reactance, the capacitive reactance and the impedance of the circuit. b. Find the Maximum current in the circuit. C. Find the phase angle between the current and voltage.

  • An RLC circuit consists of an alternating voltage source with RMS voltage 90 V and frequency...

    An RLC circuit consists of an alternating voltage source with RMS voltage 90 V and frequency 100 Hz, 180 ohm resistor, 200mH inductor, and a 900 micro-F capacitor, all wired in series. A) What is inductive reactance of the circuit? B) What is the capacitive reactance of the circuit?C) What is the impedance  of the circuit? D)What is RMS current in the circuit?E) If the frequency is adjustable what frequency should you use to maximize the current in the circuit?

  • 12. A sinusoidal voltage Δv = (75.0 V)sin(120t) is applied to a series RLC circuit with...

    12. A sinusoidal voltage Δv = (75.0 V)sin(120t) is applied to a series RLC circuit with L = 20.0 mH, C = 130.0 μF, and R = 32.0 Ω. (a) What is the impedance of the circuit? Ω (b) What is the maximum current in the circuit? A 11.An AC power source has an rms voltage of 120 V and operates at a frequency of 60.0 Hz. If a purely inductive circuit is made from the power source and a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT