Question

Consider an RLC series circuit with R = 600 Ω, L = 3 H, C =...

Consider an RLC series circuit with R = 600 Ω, L = 3 H, C = 4μF, generator voltage V = 20 v, frequency= 60 hz.

Find

a) the inductive impedance XL,

b) capacitive impedance Xc ,

c) Total impedance Z,

d) Line current I ,

e) Voltage drops VR , VL, ,Vc

f) combination voltage VRL , and VLc ,

g) phase angle φ ,

h) resonant frequency f0 ,

i) Power dissipated by circuit.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giveno- R=gooch L = 3H C = 4uF = 4x166F V - 20 Volt f = 60 Hz We know that, Angular frequency (W) = 217f - 2x Tx60 = 376.993(d) Line Current (i) - ė = V z = 20 760.06 i = 0.0263 A ANS (e) Voltage Drops- è R V R = 0.0263x600 VR = 15.78 V. ANS V i XLVL P(VL-Vc) And Kc = - Ve = 29.75-17.44 Vc Vis = 12-31 Volt/ ANS Phase diagram 19) Phase angle (0) VL-Ve VR 29.75-17.44 15.7lis power dissipated by circuit (P) – P=vx = 20 x 0.0263 Р =0.526 Walt | ANS

Add a comment
Know the answer?
Add Answer to:
Consider an RLC series circuit with R = 600 Ω, L = 3 H, C =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an RLC series circuit with R = 600 Ω, L = 3 H, C =...

    Consider an RLC series circuit with R = 600 Ω, L = 3 H, C = 4μF, generator voltage V = 20 v, frequency= 60 hz. Find everything that was found for illustration problem above. That means parts (a) thru (i)- 9 parts to the problem.

  • 5. In an RLC series circuit R = 10.0 Ω, C = 8.00 μF, L =...

    5. In an RLC series circuit R = 10.0 Ω, C = 8.00 μF, L = 0.200 H, ω,-800 rads, -200 v a. Find ms b. Find the impedance Z of this circuit and the steady-state current amplitude I in the circuit. c. Find the phase φ of the steady-state current and the power factor for this circuit. Is the load of this circuit resistive, inductive or capacitive? d. Find the average rate at which power is dissipated in the...

  • 1 ) A series circuit consisted of R= 10 KΩ, L= 42 mH , C= 2.1...

    1 ) A series circuit consisted of R= 10 KΩ, L= 42 mH , C= 2.1 µF is connected to an alternative voltage with maximum voltage of Vm = 24 V and frequency of 300.0 Hz. Find the following: Show the formula for each question. Show your Calculations – put result in a box with its unit. Please write your answer under each question a)Find the value of angular frequency ω . b) Inductive Reactance ( XL) c)Capacitive Reactance (...

  • An RLC series circuit is constructed with R = 190.0 Ω, C = 6.00 µF, and...

    An RLC series circuit is constructed with R = 190.0 Ω, C = 6.00 µF, and L = 0.54 H. The circuit is connected to an AC generator with a frequency of 60.0 Hz that delivers a maximum current of 2.30 A to the circuit. (a) What is the impedance of this circuit? ___ Ω (b) What are the maximum potential differences across each of the three circuit elements (R, L, and C)? VR, max =___ V VL, max =___...

  • When the frequency is twice the resonant frequency, the impedance of a series RLC circuit is...

    When the frequency is twice the resonant frequency, the impedance of a series RLC circuit is three times the value of the impedance at resonance. Obtain the ratios of the inductive and capacitive reactances to the resistance (XL/R and XC/R) when the frequency is twice the resonant frequency.

  • A series RLC circuit has resistance R = 10.0 Ω, inductive reactance XL = 34.0 Ω,...

    A series RLC circuit has resistance R = 10.0 Ω, inductive reactance XL = 34.0 Ω, and capacitive reactance XC = 21.0 Ω. If the maximum voltage across the resistor is ΔVR = 165 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) (a) the maximum voltage across the inductor (in V) V (b) the maximum voltage across...

  • An RLC series circuit is constructed with R-130.0 Ω, circuit. C-7.25 μF, and L-0.54 H. The...

    An RLC series circuit is constructed with R-130.0 Ω, circuit. C-7.25 μF, and L-0.54 H. The circuit is connected to an AC generator with a frequency of 60.0 Hz that delivers a maximum current of 2.20 A to the (a) What is the impedance of this circuit? (b) What are the maximum potential differences across each of the three circuit elements (R, L, and C)? VR, max И, max Vc, max (c) What is the phase angle between the source...

  • Consider an RLC circuit where a resistor (R = 35.0 Ω), capacitor (C = 15.5 μF),...

    Consider an RLC circuit where a resistor (R = 35.0 Ω), capacitor (C = 15.5 μF), and inductor (L = 0.0940 H) are connected in series with an AC source that has a frequency of 80.0 Hz. a. Determine the capacitive reactance at this frequency. b. Determine the inductive reactance at this frequency. c. Determine the total impedance. d. Determine the phase angle. e. Determine the circuit’s resonant frequency.

  • Consider a series RLC circuit with R = 12.0 Ω, L = 0.700 H, C =...

    Consider a series RLC circuit with R = 12.0 Ω, L = 0.700 H, C = 72 μF, and a maximum voltage of 100 V. (c) What is the rms current through the circuit at resonance? (d) What is the impedance at 60.0 Hz? (e) What is the rms current in the circuit at a frequency of 60 Hz?

  • (1 point) In an RLC series circuit, the rms potential difference provided by the source is...

    (1 point) In an RLC series circuit, the rms potential difference provided by the source is V=220V, and the frequency is f=170πHz. Given that L=0.7H, C=20μF, and VR=10V(rms). Since everything is stated and asked for in rms you never need to do a conversion with the square root of 2. Find: a) I (rms); I= A This will involve some algebra since you are not given R. I suggest you start by calculating the inductive and capacitive reactances. b) R;...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT