Question

Two blocks are connected by a string that is wrapped around a pulley wheel. The light...

Two blocks are connected by a string that is wrapped around a pulley wheel. The light block with mass 5.3 kg sits a flat table; the heavier block, which is twice as massive, is suspended below the pulley. There is friction acting between the lighter block and the table with a coefficient of friction 0.79. The system is released from rest. What is the speed of the blocks after the bottom block has fallen 4.2 meters in units of meters/second? You can ignore the mass of the string and the pulley wheel.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

o a T my % AT a Along vertical! al mig mi=5.3kg M2=2m. m₂ =2x5.3 kg M2 =10.6 kg m la Tis tension in the string. a is accelera41:0326 = 5:30 a For Mr. AT Im La Mag a = M g-T= mza > (10.6x9.8) – T=10.69 103-88-T= 10.69 from equation 6 and ② 7-41.0326 +

Add a comment
Know the answer?
Add Answer to:
Two blocks are connected by a string that is wrapped around a pulley wheel. The light...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks with equal mass m = 2.1 kg are connected by a string that passes...

    Two blocks with equal mass m = 2.1 kg are connected by a string that passes over a pulley wheel. Block A sits on a level table, with friction acting between the block and ramp surfaces with coefficient of kinetic friction µk = 0.27. Block B is suspended below the pulley wheel, initially at a height h = 1.23 m above the ground. The system is released from rest. What is the final speed of both blocks in units of...

  • A weight of mass 1.66 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.66 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.03 kg and radius 0.603 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds? Ignore friction and drag forces, and assume that the string does not slip.

  • A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.96 kg and radius 1.37 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds? Ignore friction and drag forces, and assume that the string does not slip.

  • Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has...

    Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has a mass m1=5.30m1=5.30 kg, block 2 has a mass m2=2.50m2=2.50 kg, while the pulley has a mass of 1.60 kg and a radius of 14.1 cm. The pulley is frictionless, and the surface mass 1 is on is also frictionless. If the blocks are released from rest, how far will block 2 fall in 2.60 s?

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • Two blocks are connected by a string that passes over a frictionless pulley, as shown in...

    Two blocks are connected by a string that passes over a frictionless pulley, as shown in the figure. The pulley has a mass of mp = 2.00 kg, and can be treated as a uniform solid disk that rotates about its center. Block A, with a mass = 3.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces, torques,...

  • A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.96 kg and radius 1.37 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds?

  • The figure shows two blocks connected by a light cord over a pulley. This apparatus is...

    The figure shows two blocks connected by a light cord over a pulley. This apparatus is known as an Atwood's machine. There is no slipping between the cord and the surface of the pulley. The pulley itself has negligible friction and it has a radius of 0.12 m and a mass of 10.3 kg. We can model this pulley as a solid uniform disk. At the instant that the heavier block has descended 1.5 m starting from rest, what is...

  • Two blocks are connected by a string that passes over a pulley of radius R and...

    Two blocks are connected by a string that passes over a pulley of radius R and moment of Inertia I. The blocks of mass m1 slides on a frictionless, horizontal surface,the block of mass m2 is suspended from the string. Find the acceleration a of the blocks and the Tensions T1 and T2 assuming the string does not slip on the pulley.

  • A block is suspended by a rope that is wrapped around a massive pulley. The pulley...

    A block is suspended by a rope that is wrapped around a massive pulley. The pulley has two spherical masses attached to its rotational axis. The mass is dropped from rest (configuration A: Left). The two masses attached to the rotational axis of the pulley are moved closer to the rotational axis and the experiment is repeated (configuration B: right). which configuration results in the block taking less time to land on the table?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT