Question

Question 3 10 pts 0.2000kg of molten copper at the melting point 1083°C, is placed into a 375.2g aluminum calorimeter cup fil
3 please
0 0
Add a comment Improve this question Transcribed image text
Answer #1

m2 = 0.3752 hatent heat at forsiona kg, quations mess of copper, ma-0.2 kg inilial temperedere of copper, Ti = 1083€. ass of

Add a comment
Know the answer?
Add Answer to:
3 please Question 3 10 pts 0.2000kg of molten copper at the melting point 1083°C, is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 17 3 pts A 771.0-kg copper bar is put into a smelter for melting. The...

    Question 17 3 pts A 771.0-kg copper bar is put into a smelter for melting. The initial temperature of the copper is 300.0 K. How much heat must the smelter produce to completely melt the copper bar? The specific heat for copper is 386 J/kg · K, the heat of fusion for copper is 205,000 J/kg, and its melting point is 1357 K. O 3.15 x 1011kg 4.73 x 105 kJ 3.15 x 108 kJ 5.62× 105 kJ Question 18...

  • An unknown material has a normal melting/freezing point of -29.9 °C, and the liquid phase has...

    An unknown material has a normal melting/freezing point of -29.9 °C, and the liquid phase has a specific heat capacity of 164 J/(kg C°). One-tenth of a kilogram of the solid at -29.9 °C is put into a 0.100-kg aluminum calorimeter cup that contains 0.105 kg of glycerin. The temperature of the cup and the glycerin is initially 27.3 °C. All the unknown material melts, and the final temperature at equilibrium is 18.4 °C. The calorimeter neither loses energy to...

  • A cube of ice is taken from the freezer at -9.5 ∘C and placed in a...

    A cube of ice is taken from the freezer at -9.5 ∘C and placed in a 75-g aluminum calorimeter filled with 330 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 17.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...

  • A cube of ice is taken from the freezer at -7.5 °C and placed in a...

    A cube of ice is taken from the freezer at -7.5 °C and placed in a 95-g aluminum calorimeter filled with 330 g of water at room temperature of 20.0 °C. The final situation is observed to be all water at 16.0 °C. The specific heat of ice is 2100 J/kg · Cº, the specific heat of aluminum is 900 J/kg . C°, the specific heat of water is is 4186 J/kg . C°, the heat of fusion of water...

  • A cube of ice is taken from the freezer at -5.5 degree C and placed in...

    A cube of ice is taken from the freezer at -5.5 degree C and placed in a 85-g aluminum calorimeter filled with 330 g of water at room temperature of 20.0 degree C. The final situation is observed to be all water at 16.0 degree C. The specific heat of ice is 2100 J/kg C degree, the specific heat of aluminum is 900 J/kg C degree, the specific heat of water is is 4186 J/kg. C degree, the heat of...

  • A copper block with a mass of 600 grams is cooled to 77K by being immersed...

    A copper block with a mass of 600 grams is cooled to 77K by being immersed in liquid nitrogen. The block is then placed in a Styrofoam cup containing some water that is initially at +50.0°C. Assume no heat is transferred to the cup or the surroundings. The specific heat of liquid water is 4186 J/(kg °C), of solid water is 2060 J/(kg °C), and of copper is 385 J/(kg °C). The latent heat of fusion of water is 3.35...

  • Find the mass HomeworkUnanswered A copper block with a mass of 700 grams is cooled to...

    Find the mass HomeworkUnanswered A copper block with a mass of 700 grams is cooled to 77K by being immersed in liquid nitrogen. The block is then placed in a Styrofoam cup containing some water that is initially at +50.0°C. Assume no heat is transferred to the cup or the surroundings. The specific heat of liquid water is 4186 J/(kg °C), of solid water is 2060 J/(kg°C), and of copper is 385 J/(kg °C). The latent heat of fusion of...

  • A copper block with a mass of 500 grams is cooled to 77 K by being...

    A copper block with a mass of 500 grams is cooled to 77 K by being immersed in liquid nitrogen. The block is then placed in a Styrofoam cup containing some water that is initially at +50.0°C. Assume no heat is transferred to the cup or the surroundings. The specific heat of liquid water is 4186 J/(kg °C), of solid water is 2060 J/(kg °C), and of copper is 385 J/(kg °C). The latent heat of fusion of water is...

  • 4. A 0.500 kg piece of copper at an initial temperature of 20.0°C is placed in...

    4. A 0.500 kg piece of copper at an initial temperature of 20.0°C is placed in a water bath and the temperature of the metal is raised to 100.0°C. Note: The specific heat capacity of copper is 385J/kg K and the latent heat of fusion is 2.07x1057/kg. a. How much heat was required to raise the temperature of the copper? b. How much more heat would be required to raise the copper to its melting point? C. How much heat...

  • The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...

    The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 235 g block of copper at 255 ∘C is placed in a 135 g aluminum calorimeter cup containing 825 g of water at 16.0 ∘C? Express your answer using three significant figures.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT