Question

A satellite is in circular orbit at an altitude of 4600 km above the surface of a nonrotating asteroid with an orbital speed of 11.8 km/s. The minimum speed needed to escape from the surface of the asteroid is 29.2 km/s. The mass of the asteroid is closest to

Question 6 (1 point) A satellite is in circular orbit at an altitude of 4600 km above the surface of a nonrotating asteroid w

0 0
Add a comment Improve this question Transcribed image text
Answer #1

mere G MM ese => Tesc r 2 GM 122 GM r 2 GM vesc 2 ma ne VAR G MM (N+R)² GM VAR ne ? GM 7 2GM 2 vesc ARE 22 => MIS G R 12 2G v

Add a comment
Know the answer?
Add Answer to:
A satellite is in circular orbit at an altitude of 4600 km above the surface of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 6 (1 point) A satellite is in circular orbit at an altitude of 4600 km...

    Question 6 (1 point) A satellite is in circular orbit at an altitude of 4600 km above the surface of a nonrotating asteroid with an orbital speed of 11.8 km/s. The minimum speed needed to escape from the surface of the asteroid is 29.2 km/s. The mass of the asteroid is closest to O 1.78 * 1024 kg. O 3.56 * 1024 kg. O2.86 x 1025 kg. O 1.43 x 1025 kg. 8.90 x 1023 kg.

  • A satellite is in circular orbit at an altitude of 1500 km above the surface of...

    A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 3.9 km/s. The minimum speed needed to escape from the surface of the planet is 9.6 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to 54 min.37 min.49 min.43 min.60 min.

  • 12.104. A satellite describes a circular orbit at an altitude of 19 110 km above the...

    12.104. A satellite describes a circular orbit at an altitude of 19 110 km above the surface of the earth. Determine (a) the increase in speed required at point A for the satellite to achieve the escape velocity and enter a parabolic orbit, (b) the decrease in speed required at point A for the satellite to enter an elliptic orbit with a minimum altitude of 6370 km, (c) the eccentricity e of the elliptic orbit. R = 6370 km 19...

  • A 507 kg satellite is in a circular orbit at an altitude of 754 km above...

    A 507 kg satellite is in a circular orbit at an altitude of 754 km above a planet’s surface. This planet is similar to our Earth. Because of air friction, the satellite eventually is brought to the Earth’s surface, and it hits the Earth with a speed of 3 km/s. The radius of the planet is 7 × 106 m and its mass is 8 × 1024 kg. The gravitational constant is 6.67259 × 10−11 N m2 /kg2. How much...

  • A 450 kg satellite is in a circular orbit at an altitude of 525 km above...

    A 450 kg satellite is in a circular orbit at an altitude of 525 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 2.00 km/s. How much energy was transformed to internal energy by means of friction?

  • A 500 kg satellite is in a circular orbit at an altitude of 550 km above...

    A 500 kg satellite is in a circular orbit at an altitude of 550 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 1.70 km/s. How much energy was transformed into internal energy by means of air friction?

  • A 475 kg satellite is in a circular orbit at an altitude of 525 km above...

    A 475 kg satellite is in a circular orbit at an altitude of 525 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 1.50 km/s. How much energy was transformed into internal energy by means of air friction?

  • A 475 kg satellite is in a circular orbit at an altitude of 575 km above...

    A 475 kg satellite is in a circular orbit at an altitude of 575 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 2.00 km/s. How much energy was transformed into internal energy by means of air friction?

  • A 450 kg satellite is in a circular orbit at an altitude of 400 km above...

    A 450 kg satellite is in a circular orbit at an altitude of 400 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 2.40 km/s. How much energy was transformed into internal energy by means of air friction?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT