Question

A merry-go-round with a mass of 250 kg and a radius of 3.0 m is rotating...

A merry-go-round with a mass of 250 kg and a radius of 3.0 m is rotating about its axis by 30.0 rpm when a student by mass of 80 kg is at 0.5 m from the center. The student moves towards the edge. Find angular velocity of total system when the student is on the edge of merry-go-round.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Since there is no external torque on the system (messy-goureund + stuckent) so angular momentum will be conserved. I i wi a I

Add a comment
Know the answer?
Add Answer to:
A merry-go-round with a mass of 250 kg and a radius of 3.0 m is rotating...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A merry-go-round is rotating about its axis by 20.0rpm when a student with mass of 75.0...

    A merry-go-round is rotating about its axis by 20.0rpm when a student with mass of 75.0 kg is at 1.0 m from the center. He starts moving toward the edge. Find angular velocity of total system when student is on the edge of merry-go-round. Merry-go-round has mass of 100 kg and radius of 3.0m and moment of inertia of disk is l= 1/2 MR2. Moment of inertia of boy is mR2. (use conservation of angular momentum)

  • A merry-go-round with moment of inertia 400 kg-m^2 and radius 2.0m is rotating with angular speed...

    A merry-go-round with moment of inertia 400 kg-m^2 and radius 2.0m is rotating with angular speed 0.50 rad/s in the clockwise direction about a fixed axis. A child of mass 40 kg runs tangentially to the merry-go-round with speed 3.0m/s and grabs onto the outside edge of the merry-go-round. a. What is the final angular velocity of the system (merry-go-round plus child)/ What is the final tangential speed of the child? b. What is the change in kinetic energy? c....

  • 5. Ilan, of mass 75 kg, stands at the center of a rotating merry-go-round platform of...

    5. Ilan, of mass 75 kg, stands at the center of a rotating merry-go-round platform of radius 3.0 m and moment of inertia 820 kg · m². The platform rotates without friction with angular velocity 0.95 rad/s. He walks radially to the edge of the platform. (a) Calculate the angular velocity when Ilan reaches the edge. (b) Calculate the rotational kinetic energy of the system of platform plus person before and after the he makes his walk. (c) While Ilan...

  • Problem 3: A merry-go-round can be considered a uniform disk of mass 145 kg and radius...

    Problem 3: A merry-go-round can be considered a uniform disk of mass 145 kg and radius 2.10 m free to rotate about a frictionless axis through its center. A 40.0 kg child stands at the edge and the system is initially rotating at 0.300 rad/sec. The child begins to walk around the edge of the merry-go-round with a velocity of 0.250 m/s relative to the ground in the direction of the rotation. What is the angular velocity of the merry-go-round...

  • A man of mass 75kg stands at the center of a rotating merry-go-round platform of radius...

    A man of mass 75kg stands at the center of a rotating merry-go-round platform of radius 3.0 m and moment of inertia 920 kgm^2. The platform rotates without friction with angular velocity 2.0 rad/s. The man walks radially to the edge of the platform. Calculate: the angular velocity of the system when the man reaches the edge, and the change in the kinetic energy of the system.

  • A merry-go-round modeled as a disk of mass 100 kg and radius 2.0 m is rotating...

    A merry-go-round modeled as a disk of mass 100 kg and radius 2.0 m is rotating around a frictionless vertical axle. After a person of mass 60 kg jumps onto the merry-go-round, the system’s angular speed decreases to 2.0 rad/s. If the person walks slowly from the edge toward the center, find the change in the system’s rotational kinetic energy caused by her movement to 0.5 m from the center.

  • 5. A 3.0 m diameter merry-go-round (mass 200 kg) is spinning at 10 rpm. A child...

    5. A 3.0 m diameter merry-go-round (mass 200 kg) is spinning at 10 rpm. A child of 30.0 kg runs tangent to the merry-go-round at 2.0 m/s, in the opposite direction that it is turning, and jumps onto the outer edge. Calculate the merry-go-round's angular velocity, immediately after the child jumps on.

  • A 50.0 kg child is on a 200.0 kg merry-go-round with a radius of 1.50 m....

    A 50.0 kg child is on a 200.0 kg merry-go-round with a radius of 1.50 m. The child starts at 0.5 m from the center and moves to the edge. The child's parent accelerates the merry-go-round from rest at 0.75Td to a speed of 1.5 Fad How long did the parent push the merry-go-round? How much force is required to hold the child when at 0.5 m from the center? (This centripetal force could be from friction, holding on, or...

  • A person of mass 80 kg stands at the center of a rotating merry-go-round platform of radius 3.5 m and moment of inertia...

    A person of mass 80 kg stands at the center of a rotating merry-go-round platform of radius 3.5 m and moment of inertia 950 kg*m^2 . The platform rotates without friction with angular velocity 0.85 rad/s . The person walks radially to the edge of the platform. 1.Calculate the angular velocity when the person reaches the edge. w=______________ rad/s 2.Calculate the rotational kinetic energy of the system of platform plus person before the person's walk. Ki=____________ J 3.Calculate the rotational...

  • A person of mass 80 kg stands at the center of a rotating merry go round...

    A person of mass 80 kg stands at the center of a rotating merry go round platform of radius 2.8m and moment of inertia 870kg ×m^2. the platform rotates without friction with angular velocity .95 rad/s. the person walks radially to the edge of the platform. calculate the rotational kinetic energy of the system of platform plus person before and after the persons walk

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT