Question

A simple harmonic oscillator consists of a block attached to a spring, moving back and forth on a frictionless horizontal surface. Suppose the mass of the box is 5.0 kg. The motion is started by holding the box at 0.50 m from its central position, using a force of 40.0 N. Then the box is let go and allowed to perform simple harmonic motion.

heereen + - 5 m m

(a) What is the amplitude of the motion?

(b) What is the spring constant k?

(c) What is the maximum elastic potential energy?

(d) What is the maximum speed of the block?

(e) At a point 0.20 m from the center of motion, what is the speed of the block?

(f) Where is the block when its speed is 1.0 m/s?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solni 93 As TA= 40= N m L <C> Maxime num x=0.5 P.E. block is released from extreme position which is 0.5m from neutral point

Add a comment
Know the answer?
Add Answer to:
A simple harmonic oscillator consists of a block attached to a spring, moving back and forth...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simple harmonic oscillator consists of a block attached to a spring, moving back and forth...

    A simple harmonic oscillator consists of a block attached to a spring, moving back and forth on a frictionless horizontal surface. Suppose the mass of the box is 5.0 kg. The motion is started by holding the box at 0.50 m from its central position, using a force of 40.0 N. Then the box is let go and allowed to perform simple harmonic motion. roosoo - 5m o +5 m (a) (2 points) What is the amplitude of the motion?...

  • A simple harmonic oscillator consists of a block attached to a spring, moving back and forth...

    A simple harmonic oscillator consists of a block attached to a spring, moving back and forth on a frictionless horizontal surface. Suppose the mass of the box is 5.0 kg. The motion is started by holding the box at .50m from its central position, using a force of 40.0 N. Then the box is let go and allowed to perform simple harmonic motion. What is the amplitude of the motion? What is the spring constant k? What is the maximum...

  • A simple harmonic oscillator consists of a block attached to a spring with k -200 N/m....

    A simple harmonic oscillator consists of a block attached to a spring with k -200 N/m. The block slides on a frictionless surface, with equilibrium point x 0 and amplitude 0.20 m. A graph of the block's velocity v as a function of time t is shown in figure below. The horizontal scale is set by's 0.20s. What are (a) the period of the SHM, (b) the block's mass, (c) its displacement att- 0, (d) its acceleration att-0.10 s, and...

  • A block is attached to a horizontal spring and oscillates back and forth on a frictionless...

    A block is attached to a horizontal spring and oscillates back and forth on a frictionless horizontal surface at a frequency of 3.00 Hz, with an amplitude of 5.08 x 10-2m. At the point where the block has its maximum speed, it splits into two identical (equal-mass) blocks and only one of these remains attached to the spring. A. What is the amplitude and frequency of the simple harmonic motion of the piece that remains attached to the spring? B....

  • A simple harmonic oscillator consists of a block of mass 4.30 kg attached to a spring...

    A simple harmonic oscillator consists of a block of mass 4.30 kg attached to a spring of spring constant 440 N/m. When t = 1.90 s, the position and velocity of the block are x = 0.179 m and v = 4.100 m/s. What is the amplitude of the oscillations? What were the position and velocity of the block at t = 0 s?

  • A simple harmonic oscillator consists of a block of mass 3.50 kg attached to a spring...

    A simple harmonic oscillator consists of a block of mass 3.50 kg attached to a spring of spring constant 400 N/m. When t = 1.70 s, the position and velocity of the block are x = 0.121 m and v = 4.020 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?

  • A simple harmonic oscillator consists of a block of mass 2.50 kg attached to a spring...

    A simple harmonic oscillator consists of a block of mass 2.50 kg attached to a spring of spring constant 190 N/m. When t = 1.70 s, the position and velocity of the block are x = 0.184 m and v = 3.140 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?

  • A simple harmonic oscillator consists of a block of mass 4.60 kg attached to a spring...

    A simple harmonic oscillator consists of a block of mass 4.60 kg attached to a spring of spring constant 290 N/m. When t = 0.530 s, the position and velocity of the block are x = 0.158 m and v = 3.560 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?

  • A simple harmonic oscillator consists of a block of mass 3.50 kg attached to a spring...

    A simple harmonic oscillator consists of a block of mass 3.50 kg attached to a spring of spring constant 440 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.136 m and v = 3.210 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?

  • A simple harmonic oscillator consists of a block of mass 2.00 kg attached to a spring...

    A simple harmonic oscillator consists of a block of mass 2.00 kg attached to a spring of spring constant 100 N/m. When t = 1.00 s, the position and velocity of the block are x = 0.129 m and v = 3.415 m/s respectively. a) What is the amplitude of oscillations? b) What were the position and velocity of the mass at time t = 0?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT