Question

9. Mercury atoms emit light at several wavelengths, see figure below. Light from a mercury lamp travels through a diffraction

0 0
Add a comment Improve this question Transcribed image text
Answer #1

=) d=mid y for m= 1, y = 21.961cm. D= =50cm, x=404.656 nm.,d=? displacementy = m AD d d=1x 404.656X10-9x50x102 21.961 X10-2 d

Add a comment
Know the answer?
Add Answer to:
9. Mercury atoms emit light at several wavelengths, see figure below. Light from a mercury lamp...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 9. Mercury atoms emit light at several wavelengths, see figure below. Light from a mercury lamp...

    9. Mercury atoms emit light at several wavelengths, see figure below. Light from a mercury lamp travels through a diffraction grating and is cast on a screen 50 cm away. The emission at wavelength 404.656 nm creates a first order bright fringe at 21.961 cm from the center maximum. What then is the wavelength of the bright fringe at a distance 34.991 cm from the center maximum. Note: the whole spectrum below is one mode or m. Mercury (Hg) 400...

  • Constants I Periodic Table Helium atoms emit light at several wavelengths. Light from a helium lamp...

    Constants I Periodic Table Helium atoms emit light at several wavelengths. Light from a helium lamp illuminates a diffraction grating and is observed on a screen 50.00 cm behind the grating. The emission at wavelength 501.5 nm creates a first-order bright fringe 21.90 cm from the central maximum. We were unable to transcribe this image

  • ADDITIONAL PROBLEMS Question 24.3a: Light from a sodium lamp at wavelengths 589.0 nm and 589.6 nm...

    ADDITIONAL PROBLEMS Question 24.3a: Light from a sodium lamp at wavelengths 589.0 nm and 589.6 nm illuminates a diffraction grating with 3.500 x 102 lines/mm. The diffraction pattern is observed on a wall 3.600 m beyond the grating. Determine the separation between the two bright fringes, one bright fringe for each wavelength, corresponding to m = +4. 0.3024 x cm

  • A mercury lamp, which emits several discrete wavelengths of light, finds many uses in spectroscopy. Mercury...

    A mercury lamp, which emits several discrete wavelengths of light, finds many uses in spectroscopy. Mercury lines are employed as wavelength standards, as UV sources, and historically as excitation sources for Raman scattering. The 435.83-nm light from a mercury lamp is used to irradiate a pure liquid CCl4 sample, and scattered light is observed at 447.57, 442.19, and 440.05 nm (among others.) What CCl4 vibrational wavenumbers correspond to the scattered light observed here? 447.57nm: _____ cm^-1 44219nm: _____ cm^-1 440.05nm:...

  • 2. You have a diffraction grating with 2500 lines/cm. You also have a light source that...

    2. You have a diffraction grating with 2500 lines/cm. You also have a light source that emits light at 2 different wavelengths, 540 nm and 690 nm, at the same time. The screen for your experiment is 1.2 meters from the diffraction grating. A. What is the line spacing for the grating? B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating? C. Which wavelength is closer to the center of...

  • The two most prominent wavelengths in the light emitted by a helium discharge lamp are 686.7...

    The two most prominent wavelengths in the light emitted by a helium discharge lamp are 686.7 nm (red) and 587.6 nm (yellow). Light from a helium lamp illuminates a diffraction grating with 750 lines/mm, and the light is observed on a screen 50 cm behind the grating. What is the distance between the first-order red and yellow fringes? Express your answer in cm.

  • The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue)

    The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 550 lines / mm, and the light is observed on a screen 1.2 m behind the grating.You may want to review (Page 940).For general problem-solving tips and strategies for this topic, you may want to view a Video Tutor Solution of Diffraction grating.Part AWhat is the distance between...

  • The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656...

    The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue) Light from a hydrogen lamp illuminates a diffraction grating with 550 lines/mm, and the light is observed on a screen 1.4 m behind the grating Part A You may want to review (Page 940) For general problem-solving tips and strategies for this topic, you may want to view a Video Tutor Solution of Diffraction grating. What is the...

  • Please draw a diagram thank you! Light from a sodium lamp passes through a diffraction grating...

    Please draw a diagram thank you! Light from a sodium lamp passes through a diffraction grating having 1000 slits per millimeter. The interference patter is viewed on a screen 1.00 m from the grating. Two bright yellow fringes are visible at 72.88 cm and 73.00 cm from the central maximum. What are the wavelengths of the two fringes? 589.0 nm and 589.6 nm 72.88 nm and 73.00 nm 678.9 nm and 679.8 nm 711.7 nm and 771.9 nm ck Save...

  • QUESTION 7 Light of 430 nm passing through a diffraction grating with a separation, d=1.5 x...

    QUESTION 7 Light of 430 nm passing through a diffraction grating with a separation, d=1.5 x 10-6 m creates an interference pattern on a screen 2.3 m away. What is the maximum number of bright fringes possible to see on the screen? A. Three OB. Seven C. Four O D. Six O E. Five QUESTIONS Light passing through a diffraction grating with a separation, d = 1.8 x 10m creates an interference pattern on a screen 1.2 m away. If...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT