Question

You may recognize the figure below from an earlier homework. It, however, represents a very different physical situation: thi
0 0
Add a comment Improve this question Transcribed image text
Answer #1

b 82 – 9.28 mm ie out sede current flow total cylinder is I= 9A B(8) Ho I 2282 47x10-7 X 9 27 X 9.8 x 10-3 1.84 X 10-4 T - B

Add a comment
Know the answer?
Add Answer to:
You may recognize the figure below from an earlier homework. It, however, represents a very different...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • You may recognize the figure below from an earlier homework. It, however, represents a very different...

    You may recognize the figure below from an earlier homework. It, however, represents a very different physical situation: this is now a very long (infinite for our purposes) conducting wire in the form of a cylindrical shell. The inner radius of the shell a=2.9 mm and outer radius b=4.1 mm. The electric current I=13.5 A runs along this wire and is distributed uniformly throughout the shell cross-section. This current is the source of the magnetic field, which you will be...

  • You may recognize the figure below from an earlier homework. It, however, represents a very different...

    You may recognize the figure below from an earlier homework. It, however, represents a very different physical situation: this is now a very long (infinite for our purposes) conducting wire in the form of a cylindrical shell. The inner radius of the shell a=3.5 mm and outer radius b=5.2 mm. The electric current I=10.5 A runs along this wire and is distributed uniformly throughout the shell cross-section. This current is the source of the magnetic field, which you will be...

  • You may recognize the figure below from an earlier homework. It, however, represents a very different...

    You may recognize the figure below from an earlier homework. It, however, represents a very different physical situation: this is now a very long (infinite for our purposes) conducting wire in the form of a cylindrical shell. The inner radius of the shell a=2.3 mm and outer radius b=4.2 mm. The electric current i=15 A runs along this wire and is distributed uniformly throughout the shell cross-section. This current is the source of the magnetic field, which you will be...

  • Electricity and Magnetism: How were these answers obtained? You may recognize the figure below from an...

    Electricity and Magnetism: How were these answers obtained? You may recognize the figure below from an earlier homework. It, however, represents a very different physical situation: this is now a very long (infinite for our purposes) conducting wire in the form of a cylindrical shell. The inner radius of the shell a=2.7 mm and outer radius b=5.8 mm. The electric current I=18 A runs along this wire and is distributed uniformly throughout the shell cross- section. This current is the...

  • Please solve and explain how its done. You may recognize the figure below from an earlier...

    Please solve and explain how its done. You may recognize the figure below from an earlier homework. It, however, represents a very different physical situation: this is now a very long (infinite for our purposes) conducting wire in the form of a cylindrical shell. The inner radius of the shell a=3.3 mm and outer radius b=4.7 mm. The electric current I=22.5 A runs along this wire and is distributed uniformly throughout the shell cross-section. This current is the source of...

  • Using Ampere’s Law, find the magnitude of the magnetic field at a point exterior to a...

    Using Ampere’s Law, find the magnitude of the magnetic field at a point exterior to a coaxial cable, a distance of 24 mm from the central axis. The coaxial cable consists of a wire with radius r1=1.3 mm and surrounding that, a cylindrical shell with inner radius r2=2.5 mm and outer radius r3=3.3 mm. The wire and cylindrical shell carry equal currents (4.0 A) in opposite directions. Side questions: 1. does the outer radius matter? 2. what would you do...

  • 4) A very LONG hollow cylindrical conducting shell (in electrostatic equilibrium) has an inner radius R1 and an outer radius R2 with a total charge -5Q distributed uniformly on its surfaces. Asume th...

    4) A very LONG hollow cylindrical conducting shell (in electrostatic equilibrium) has an inner radius R1 and an outer radius R2 with a total charge -5Q distributed uniformly on its surfaces. Asume the length of the hollow conducting cylinder is "L" and L>R1 and L>> R2 The inside of the hollow cylindrical conducting shell (r < R1) is filled with nonconducting gel with a total charge QGEL distributed as ρ-Po*r' ( where po through out the N'L.Rİ volume a) Find...

  • The cross-section of a long cylindrical shell conductor of inner radius a=2.63 cm and outer radius...

    The cross-section of a long cylindrical shell conductor of inner radius a=2.63 cm and outer radius b=8.16 cm carries a current into the page. The current density J (current/area) is uniform across the shell from r=a to r=b and has the magnitude J=2371 A/m2 where r is the distance from the axis of the shell. Find the magnitude of the magnetic field at r=(a+b)/2

  • The cross-section of a long cylindrical shell conductor of inner radius a=2.43 cm and outer radius...

    The cross-section of a long cylindrical shell conductor of inner radius a=2.43 cm and outer radius b=7.33 cm carries a current into the page. The current density J (current/area) is uniform across the shell from r=a to r=b and has the magnitude J=3452 A/m2 where r is the distance from the axis of the shell. Find the magnitude of the magnetic field at r=(a+b)/2

  • A thin cylindrical shell of radius R1=6.0cm is surrounded by a second cylindrical shell of radius...

    A thin cylindrical shell of radius R1=6.0cm is surrounded by a second cylindrical shell of radius R2=8.1cm, as in the figure (Figure 1). Both cylinders are 9.0 m long and the inner one carries a total charge Q1=−0.73μC and the outer one Q2=+1.60μC. Part B For points far from the ends of the cylinders, determine the magnitude of the electric field at a radial distance rr from the central axis of 6.9 cmcm . Part D For points far from...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT