Question

An electron is trapped in an infinite square-well potential of width 0.3 nm. If the electron is initially in the n = 4 state,

0 0
Add a comment Improve this question Transcribed image text
Answer #1

= The energy in the infinite square well is, nha E, 8m2 (1)(6.626 x 10-24) E 8(9.11x10-31)(0.3x10-9) = 6.62934x10-19J =4.14e

Add a comment
Know the answer?
Add Answer to:
An electron is trapped in an infinite square-well potential of width 0.3 nm. If the electron...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An electron is trapped in an infinitely deep one-dimensional well of width 0.286 nm. Initially the...

    An electron is trapped in an infinitely deep one-dimensional well of width 0.286 nm. Initially the electron occupies the n = 4 state. (a) Suppose the electron jumps to the ground state with the accompanying emission of a photon. What is the energy of the photon? eV (b) Find the energies of other photons that might be emitted if the electron takes other paths between the n = 4 state and the ground state. eV 4 3 4 2 eV...

  • An electron is trapped in an infinite well of width 10 nm. If the electron drops...

    An electron is trapped in an infinite well of width 10 nm. If the electron drops down 5 energy levels and in the process emits a photon with wavelength 640.15 nm, then what is the final energy of the electron? eV Submit Help

  • Suppose that an electron trapped in a one-dimensional infinite well of width 118 pm is excited...

    Suppose that an electron trapped in a one-dimensional infinite well of width 118 pm is excited from its first excited state to the state with n = 8. (a) What energy (in eV) must be transferred to the electron for this quantum jump? The electron then de-excites back to its ground state by emitting light, In the various possible ways it can do this, what are the (b) shortest, (c) second shortest, (d) longest, and (e) second longest wavelengths (in...

  • Suppose that an electron is trapped in a one- dimensional, infinite potential well of width 250...

    Suppose that an electron is trapped in a one- dimensional, infinite potential well of width 250 nm is excited from the 2nd excited state to the fifth excited state. What energy must be transferred to the electron in order to make this transition? Answer: 1.62 x 10^-4 eV Check Correct Marks for this submission: 2.00/2.00. What wavelength photon does this correspond to? Answer: 75.15*10^-4m Check Considering all of the possible ways that the excited electron can de-excite back down to...

  • Consider an electron in an infinite well of width 2.1 nm . What is the wavelength...

    Consider an electron in an infinite well of width 2.1 nm . What is the wavelength of a photon emitted when the electron in the infinite well makes a transition from the first excited state to the ground state? The value of h is 1.05457 × 10^−34 J · s, the Bohr radius is 5.29177 × 10^−11 m , the Rydberg constant for hydrogen is 1.09735 × 10^7 m−1 , the ground state energy for hydrogen is 13.6057 eV ,...

  • Consider the electron states in an infinite square well potential. a) If the difference in energy...

    Consider the electron states in an infinite square well potential. a) If the difference in energy between the n=2 and the n=3 states is 2 eV, calculate the width of this square well. b) If energy making a transition from the n=3 state to the n=2 state gives up the energy difference as an emitted photon, what is the wavelength of the photon?

  • An infinitely deep square well has width L 2.5 nm. The potential energy is V =...

    An infinitely deep square well has width L 2.5 nm. The potential energy is V = 0 eV inside the well (i.e., for 0 s xs L) Seven electrons are trapped in the well. 1) What is the ground state (lowest) energy of this seven electron system? Eground eV Submit 2) What is the energy of the first excited state of the system? NOTE: The first excited state is the one that has the lowest energy that is larger than...

  • 5. Electron in an Infinite Potential Well a) Calculate the ground state and two next highest...

    5. Electron in an Infinite Potential Well a) Calculate the ground state and two next highest energy levels for an electron confined to an infinitely high potential well of width l = 1.00E-10 m (roughly the diameter of a hydrogen atom in its ground state). b) If a photon were emitted when an electron jumps from n = 2 to n = 1, what would it's wavelength be? In which part of the spectrum does this lie?

  • 6. Consider an electron in an infinite potential well of size 1 nm (a) What is...

    6. Consider an electron in an infinite potential well of size 1 nm (a) What is the ground state (lowest energy level) energy of the electron? (b) What is the energy required to move an electron from ground state to the third energy level (n-3)? (c) What wavelength of photon would be emitted if the electron move from n-3 to its ground level? (Electron mass - 9.11 x 103 kg, h-1.055 x 1034 J.s, h 6.626 x 1034 J.s)

  • An infinite square well and a finite square well in 1D with equal width. The potential...

    An infinite square well and a finite square well in 1D with equal width. The potential energies of these wells are Infinite square well: V(x)=0, from 0 < x < a, also V(x) = , elsewhere Finite square well: V(x)= 0, from 0 < x < a, also V(x) = , elsewhere The ground state of both systems have identical particles. Without solving the energies of ground states, determine which particle has the higher energy and explain why?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT