Question

18. Consider the potential barrier as shown in the figure. Calculate the transmission coefficcient. Discuss the depence of th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

soln Video and @The given potential bameo is as follows, na bir donde E taustast on oth b Vi where the particle has energy EThe example of such effect is the Gamows theory of a decay. According to this theory, the a particles are stuck inside the n

Add a comment
Know the answer?
Add Answer to:
18. Consider the potential barrier as shown in the figure. Calculate the transmission coefficcient. Discuss the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Tunneling through arbitrary potential barrier Consider the tunneling problem in the WKB approximation through an arbitrary...

    Tunneling through arbitrary potential barrier Consider the tunneling problem in the WKB approximation through an arbitrary shaped potential barrier V(2) where V (1) + 0 for x + to, the energy of the particle of mass m is E, and the classical turning points are a and b. Show that the transmission coefficient is given by where T=e=2(1 + (-21)-2 L = "p\dx .

  • (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width...

    (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width L represented by a step function ſo I<0 or 1>L V U. r>0 and 2<L The total wavefunction is subject to the time-independent Schrödinger equation = EV (2) 2m ar2 +V where E is the energy of the quantum particle in question and m is the mass of the quantum particle. A The total wavefunction of a free particle that enters the barrier from...

  • Consider a finite square barrier potential shown below. Figure A. For a<x<b, the space part of...

    Consider a finite square barrier potential shown below. Figure A. For a<x<b, the space part of the electron wave function has the form: k? = 2mE/h? and gu2m(V,-E)/h2 (a) Aeikx (b) Aegn (c) Ae*** + Be** (d) Ae* (e) Aelkx + Be-ika For the finite square barrier potential shown below, Figure A. For x<a, the space part of the electron wave function has the form: k = 2mE/h? and g=2m(Vo-E) /h (a) Aeikx (b) Aetex (c) Ae*EN + Bet* (d)...

  • mechani mie The potential energy barrier shown below is a simplified model of thec electrons in...

    mechani mie The potential energy barrier shown below is a simplified model of thec electrons in metals. The metal workfunction (Ew), the minimum energy required to remove an electron from the metal, is given by Ew-,-E where 1s the height of the potential energy barrier and E is the energy of the electrons near the surface of the metal. The potential energy barrier is = 5 eV V(x) V=0 (a) The wavefunction of an electron on the surface (x< 0)...

  • 5. Consider a square potential barrier in figure below: V(x) 0 x <0 a) Assume that...

    5. Consider a square potential barrier in figure below: V(x) 0 x <0 a) Assume that incident particles of energy E> v are coming from-X. Find the stationary states (the equations for region . 2 and 3 and the main equation for the all regions). Apply the matching limit conditions in the figure. Explain and find all the constants used in the equations in terms of the parameters provided and Planck's constant -(6) Find the transmission and reflection coefficients. -(4)

  • 4. An electron having total energy E 4.50 eV approaches a rectangular Energy energy barrier with...

    4. An electron having total energy E 4.50 eV approaches a rectangular Energy energy barrier with U= 5.00 eV and L = 950 pm as shown. Classically, the electron cannot pass through the barrier because E < U. However, quantum mechanically the probability of tunneling is not zero. a) Calculate this probability, which is the transmission coefficient. b) By how much would the width L of the potential barrier have to change for the chance of an incident 4.50-eV electron...

  • Consider a potential well, whose potential is given by (a) Evaluate the reflection and transmission coefficient...

    Consider a potential well, whose potential is given by (a) Evaluate the reflection and transmission coefficient for the case E > 0. (b) Use your result for the transmission coefficient obtained in (a) above, to evaluate the transmission coefficient for the potential barrier,   (V0 > 0) for the case E < V0. Please show all steps thoroughly S-V, (-a <r <a) 10, elsewhere JV, (-a <r <a) V.C) = 0. elsewhere

  • Problem 16.1 P16.1 In this problem, you will calculate the transmission probability through the barrier illustrated...

    Problem 16.1 P16.1 In this problem, you will calculate the transmission probability through the barrier illustrated in Figure 16.10. We first go through the mathematics leading to the solution. You will then carry out further calculations. The domain in which the calculation is carried out is divided into three regions for which the potentials are Aetikx + Be-ikx Region I ψ(x)-cexpFPWh-x] - 1 V(x) =0 for x 0 V(x) = Vo for 0 < x < a V(x) =0 for...

  • 0 Figure 2: The potential barrier setup for Problem 4 4. (10 points) "Burrowing a hole...

    0 Figure 2: The potential barrier setup for Problem 4 4. (10 points) "Burrowing a hole in the wall" Some particles of mass m and energy E move from the left to the potential barrier shown in Figure 2 below 0 <0 Uo 20 U(x) where Uo is some positive value (a) (5 points) Write the Time-Independent Schrödinger equations and the physically acceptable general solutions for the wave function (x) in regions I and II as labeled in Figure 2...

  • Consider a traveling (electrons) wave moving in the +x direction approaching a step barrier of height 1 eV; that is V =...

    Consider a traveling (electrons) wave moving in the +x direction approaching a step barrier of height 1 eV; that is V = 0 for x < 0, V = 1.0 eV for x ≥ 0. For x < 0, there will be both the traveling wave in the +x direction. For x ≥ 0, only a solution corresponding to motion in the +x direction exists. By solving the Schrödinger wave equation in both x < 0 and x ≥ 0...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT