Question

(III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width L represented by a step functi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Based on Chegg's policy, only the first question is answered.

The boundary condition at x=0 requires the wavefunction and its derivative to be continued at that point. √(x) - vol v(x) = 0 v(x)=0 x= L 2-0 The at a = requires its derivative to that point. boundary condition wave function and co

Add a comment
Know the answer?
Add Answer to:
(III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an electron with energy E in region I confined by a barrier with potential energy...

    Consider an electron with energy E in region I confined by a barrier with potential energy Vo and width W. Plot the probability that the electron “tunnels” through the barrier and ends up in Region III as a function of the barrier width for Vo = 1 eV and E = 0.1, 0.25, 0.5, 0.75 and 0.9 eV. Also show the code for the plots.

  • 4. An electron having total energy E 4.50 eV approaches a rectangular Energy energy barrier with...

    4. An electron having total energy E 4.50 eV approaches a rectangular Energy energy barrier with U= 5.00 eV and L = 950 pm as shown. Classically, the electron cannot pass through the barrier because E < U. However, quantum mechanically the probability of tunneling is not zero. a) Calculate this probability, which is the transmission coefficient. b) By how much would the width L of the potential barrier have to change for the chance of an incident 4.50-eV electron...

  • mechani mie The potential energy barrier shown below is a simplified model of thec electrons in...

    mechani mie The potential energy barrier shown below is a simplified model of thec electrons in metals. The metal workfunction (Ew), the minimum energy required to remove an electron from the metal, is given by Ew-,-E where 1s the height of the potential energy barrier and E is the energy of the electrons near the surface of the metal. The potential energy barrier is = 5 eV V(x) V=0 (a) The wavefunction of an electron on the surface (x< 0)...

  • plz hlp Tunneling An electron of energy E = 2 eV is incident on a barrier...

    plz hlp Tunneling An electron of energy E = 2 eV is incident on a barrier of width L = 0.61 nm and height Vo-3 eV as shown in the figure below. (The figure is not drawn to scale.) 1) What is the probability that the electron will pass through the barrier? The transmission probability is 0 SubmitHelp 2) Lets understand the influence of the exponential dependence. If the barrier height were decreased to 2.8 eV (this corresponds to only...

  • Tunneling through arbitrary potential barrier Consider the tunneling problem in the WKB approximation through an arbitrary...

    Tunneling through arbitrary potential barrier Consider the tunneling problem in the WKB approximation through an arbitrary shaped potential barrier V(2) where V (1) + 0 for x + to, the energy of the particle of mass m is E, and the classical turning points are a and b. Show that the transmission coefficient is given by where T=e=2(1 + (-21)-2 L = "p\dx .

  • In class we considered quantum tunneling of a particle of energy Eo through a barrier of...

    In class we considered quantum tunneling of a particle of energy Eo through a barrier of potential Vofor Vo > Eo. Here we focus on two aspects of the problem we ignored in class. In order to simplify we will only consider the initial first half of the barrier as shown below RegionI xS0 Regionx 20 Il There are two cases to consider: Eo< Vo Considered in class E>Vo Not considered in class Here we will focus on the second...

  • Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a)...

    Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a) State the time-independent Schrödinger equation within the region 0<x<L for a particle with positive energy E 2 marks] (b) The wavefunction for 0<x< L can be written in the general form y(x) = Asin kx + B cos kx. Show that the normalised wavefunction for the 1D infinite potential well becomes 2sn'n? ?snT/where ( "1,2,3 ! where ( n = 1,2,5, ). [4 marks]...

  • 0 Figure 2: The potential barrier setup for Problem 4 4. (10 points) "Burrowing a hole...

    0 Figure 2: The potential barrier setup for Problem 4 4. (10 points) "Burrowing a hole in the wall" Some particles of mass m and energy E move from the left to the potential barrier shown in Figure 2 below 0 <0 Uo 20 U(x) where Uo is some positive value (a) (5 points) Write the Time-Independent Schrödinger equations and the physically acceptable general solutions for the wave function (x) in regions I and II as labeled in Figure 2...

  • Consider a particle encountering a barrier with potential U = U.>0 between x = -a and...

    Consider a particle encountering a barrier with potential U = U.>0 between x = -a and x = a with incoming energy E > U. a) Write the symbolic wave functions before and after passing through the barrier (i.e., for x<-a and x>a; regions I and III). U1 b) Write down the Schrodinger equation for the wave function in the middle (region II) where the potential is non-zero i.e., where -a<x<a; region II). c) What solution would you try for...

  • 1. Consider an electron initially moving in the positive x-direction along the negative x-axis wi...

    1. Consider an electron initially moving in the positive x-direction along the negative x-axis with an energy E. At the origin the potential energy U (x) changes abruptly, from U(x) = 0 for x < 0, to U(x) = 1.00 eV for x > 0. If E=1.02 eV, just higher than the barrier by 2%, what is the barrier penetration length? What is the reflectance? What is the transmittance? 2. Consider an electron initially moving in the positive x-direction along...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT