Question

(1 point) Use the Laplace transform to solve the following initial value problem: y – 2y + 10y = 0 y(O) = 0, y (O) = 3 Firs

PLEASE MAKE SURE TO ANSWER ALL EMPTY BOXES SHOWN ON THE PROBLEM PLEASE AND THANK YOU

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sol y-24t loyzo 416)=0, 420)=3 I lyy = YIS) formular Llyly = SY(S) - Y10) Lly) = 8² y(s)-S Y (0) - ylo). Now from [sycs) -

Add a comment
Know the answer?
Add Answer to:
PLEASE MAKE SURE TO ANSWER ALL EMPTY BOXES SHOWN ON THE PROBLEM PLEASE AND THANK YOU...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • STRUGGLING PLEASE HELP (1 point) Use the Laplace transform to solve the following initial value problem:...

    STRUGGLING PLEASE HELP (1 point) Use the Laplace transform to solve the following initial value problem: y" – 2y + 10y = 0 y(0) = 0, y' (O) = 3 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) = By completing the square in the denominator and inverting the transform, find yt) =

  • PLEASE MAKE SURE TO ANSWER CORRECTLY ALL EMPTY BOXES ON THE PROBLEM SHOWN PLEASE AND THANK...

    PLEASE MAKE SURE TO ANSWER CORRECTLY ALL EMPTY BOXES ON THE PROBLEM SHOWN PLEASE AND THANK YOU SO SO MUCH (1 point) Consider the initial value problem y" + 16y = 32t, y(O) = 4, y(0) = 3. a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until...

  • (6 points) Use the Laplace transform to solve the following initial value problem: y" – 10y'...

    (6 points) Use the Laplace transform to solve the following initial value problem: y" – 10y' + 40y = 0 y(0) = 4, y'(0) = -5 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) By completing the square in the denominator and inverting the transform, find y(t) =

  • (4 points) Use the Laplace transform to solve the following initial value problem: y" – 2y...

    (4 points) Use the Laplace transform to solve the following initial value problem: y" – 2y + 5y = 0 y(0) = 0, y'(0) = 8 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)}| find the equation you get by taking the Laplace transform of the differential equation = 01 Now solve for Y(3) By completing the square in the denominator and inverting the transform, find g(t) =

  • (1 point) Use the Laplace transform to solve the following initial value problem: y! -8y +...

    (1 point) Use the Laplace transform to solve the following initial value problem: y! -8y + 20y = 0 y(O) = 0, y (0) = 2 First, using Y for the Laplace transform of y(t), i.e., Y = {y(0), find the equation you get by taking the Laplace transform of the differential equation 2/(s(2)-8s+20) =0 Now solve for Y(s) = 1/[(9-4) (2)+(2)^(2)) By completing the square in the denominator and inverting the transform, find y() = (4t)sint

  • Please answer the blamnks. Thank you. (1 point) Use the Laplace transform to solve the following...

    Please answer the blamnks. Thank you. (1 point) Use the Laplace transform to solve the following initial value problem: y6y9y 0,with y(0) 1, y (0) = -4 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)} find the equation you get by taking the Laplace transform of the differential equation =0 Now solve for Y(s) = and write the above answer in its partial fraction decomposition, A Y(s) (s+a} s+a Y(s) Now by inverting the transform,...

  • (1 point) Use the Laplace transform to solve the following initial value problem: y" + 6y'...

    (1 point) Use the Laplace transform to solve the following initial value problem: y" + 6y' - 16y = 0 y(0) = 3, y(0) = 1 First, using Y for the Laplace transform of y(t), i.e., Y = C{y(t)). find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) = and write the above answer in its partial fraction decomposition, Y(S) = Y(s) = A. where a <b Now by...

  • (1 point) Use the Laplace transform to solve the following initial value problem: y" + 3y...

    (1 point) Use the Laplace transform to solve the following initial value problem: y" + 3y = 0 y(0) = -1, y(0) = 7 First, using Y for the Laplace transform of y(t), i.e.. Y = C{y(t)} find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y (8) and write the above answer in its partial fraction decomposition, Y(s) Y(8) = B b where a <b sta !! Now by...

  • (1 pt) Use the Laplace transform to solve the following initial value problem: y" +-6y' +...

    (1 pt) Use the Laplace transform to solve the following initial value problem: y" +-6y' + 9y = 0 y0) = 2, y'(0) = 1 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) = and write the above answer in its partial fraction decomposition, Y(s) = sta + Y(s) = 2 Now by inverting the...

  • (6 points) Use the Laplace transform to solve the following initial value problem: y" + 3y'...

    (6 points) Use the Laplace transform to solve the following initial value problem: y" + 3y' = 0 y(0) = -3, y'(0) = 6 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation = 0 = = + Now solve for Y(s) and write the above answer in its partial fraction decomposition, Y(s) where a <b Y(S) B s+b sta + Now...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT